所属成套资源:【期末专项】2022-2023学年北师大版数学五年级上册期末专项复习试题
【期末专项复习】北师大版数学五年级上册期末专项强化B卷——4.多边形的面积(含答案)
展开
这是一份【期末专项复习】北师大版数学五年级上册期末专项强化B卷——4.多边形的面积(含答案),共12页。试卷主要包含了多边形的面积,4B.3,6平方厘米等内容,欢迎下载使用。
五年级上册数学期末高频易错专项强化突破B卷4.多边形的面积(满分:100分,完成时间:60分钟)一.选择题(满分16分,每小题2分)1.平行线间的3个图形的面积相比(如图)。正确的说法是 A.平行四边形的面积最大 B.三角形的面积最大 C.三个图形的面积相等2.一个梯形的面积是,上底是,下底是,高 。A.2.4 B.3.36 C.4.8 D.8.43.如图,直角三角形的面积是24平方厘米,一条直角边长8厘米,另一条直角边长 厘米。A.6 B.3 C.44.把一个三角形的底和高同时扩大3倍,它的面积就 A.扩大到原来的3倍 B.扩大到原来的6倍 C.扩大到原来的9倍5.张华家靠墙围成如图的鸡笼,用了50米的篱笆,这个鸡笼的面积是 。 A. B. C. D.6.空地上有一堆圆木,顶层有2根,底层有6根,一共5层,且每相邻的两层相差1根,这堆圆木有 根。A.20 B.40 C.607.一个三角形和一个平行四边形面积相等,底也相等。平行四边形的高是,三角形的高是 A. B. C. D.8.一个平行四边形面积比与它等底等高的三角形面积多,这个三角形的面积是 。A.19 B.38 C.76 D.152二.填空题(满分16分,每小题2分)9.一个梯形,下底长度是上底的3倍,如果把上底延长18厘米,就变成一个平行四边形(如图),这梯形的上底长 厘米,下底长 厘米。10.如图甲三角形的面积是40平方厘米,那么乙三角形的面积是 平方厘米。11.一个三角形的底是,高是,它的面积是 。与它等底等高的平行四边形的面积是 。12.一个三角形的面积是4.8平方厘米,与这个三角形等底等高的平行四边形的面积是 平方厘米。13.有一个直角梯形,上底是,如果把上底延长,原来的梯形就变成了正方形,原来的梯形的面积是 。14.一个梯形若上底增加2厘米,则成为一个正方形;若缩短3厘米,则成为一个三角形,这个梯形的面积是 平方厘米。15.用12根1米长的篱笆靠一面墙围成一个高为6米的直角梯形(如图),围成的梯形面积是 。16.一块梯形铁皮的上底长,下底长,高,从梯形铁皮剪去一个最大的平行四边形,这块平行四边形铁皮的面积是 。三.判断题(满分8分,每小题2分)17.一个梯形的上底是5厘米,高是8厘米,下底是8厘米,它的面积是104平方厘米. 18.一个面积是20平方分米的梯形,当上底是12分米,下底是8分米时,高是10厘米. .19.一个直角三角形的面积是两条直角边乘积的一半. .20.一个三角形的面积是12平方米,高是4米,底是3米。 四.计算题(满分6分,每小题6分)21.(6分)选择合适的数据计算下面图形的面积。(1)(2)(3) 五.应用题(满分54分,每小题6分)22.(6分)文化广场有一块三角形空地,底是17米,高是20米,要给这块空地铺上草坪,每平方米草坪的价格是120元,准备20000元钱够吗? 23.(6分)有一块三角形的广告牌,底是22米,高是10米,如果油漆这块广告牌,每平方米有油漆500克.准备了50千克油漆,够吗? 24.(6分)一块桃树林的形状是三角形,它的底是80米,高是30米,如果每棵桃树占地5平方米,这块桃树林一共有多少棵桃树? 25.(6分)用80米的篱笆靠围墙围一个梯形菜地,这个菜地占地多少平方米? 26.(6分)一块梯形菜园,面积是960平方米,上底与下底之和是120米,它的高是多少米? 27.(6分)一家自选商店门口的装饰牌是等腰梯形。它的上底是6米,下底是12米,高是2米。油漆这块装饰牌的正面,每平方米需用油漆1千克,20千克油漆够不够? 28.(6分)一块平行四边形的瓜地,底长25米,高20米,如果平均每平方米栽瓜苗32棵,共栽多少棵? 29.(6分)张叔叔在一块底边为60米、高为25米的平行四边形空地上种满草皮,如果每平方米草皮的售价是4.3元,这块地上的草皮可以卖多少元? 30.(6分)妙想家在一块底边为3米、高为2.5米的平行四边形空地上种满了鲜花.如果每平方米土地的鲜花卖320元,这块平行四边形地上的鲜花可以卖多少元?
参考答案一.选择题(满分16分,每小题2分)1.【分析】假设它们的高都是8,分别算出三个图形的面积,再比较大小即可。【解答】解:假设它们的高都是8。平行四边形的面积:三角形的面积:梯形的面积:所以平行四边形的面积最大。故选:。【点评】分别算出三个图形的面积,是解答此题的关键。2.【分析】根据梯形的面积公式灵活转化解出高,高面积(上底下底)即可解答。【解答】解:(米答:高。故选:。【点评】本题主要考查梯形的面积公式的灵活转化。3.【分析】根据三角形的面积高底,求出三角形的底即可。【解答】解:(厘米)答:另一条直角边长6厘米。故选:。【点评】熟练掌握三角形的面积公式,是解答此题的关键。4.【分析】根据三角形的面积公式:,再根据积的变化规律,两个因数都扩大到原来的3倍,积就扩大到原来的倍。据此解答。【解答】解:所以它的面积就扩大到原来的9倍。故选:。【点评】此题主要考查三角形面积公式的灵活运用,积的变化规律及应用。5.【分析】观察图形可知:梯形的上下底的和是米,高是20米,然后根据梯形的面积(上底下底)高,把数据代入公式即可求解。【解答】解:(平方米)答:这个鸡笼的面积是300平方米。故选:。【点评】此题主要考查梯形面积公式的灵活运用,关键是熟记公式。6.【分析】根据梯形的面积公式:,把数据代入公式解答。【解答】解:(根答:这堆圆木有20根。故选:。【点评】此题主要考查梯形面积公式的灵活运用,关键是熟记公式。7.【分析】因为等底等高的平行四边形的面积是三角形面积的2倍,所以当三角形与平行四边形的面积相等,底也相等时,三角形的高是平行四边形高的2倍。据此解答。【解答】解:(厘米)答:三角形的高是16厘米。故选:。【点评】此题考查的目的是理解掌握等底等高的三角形和平行四边形面积之间的关系及应用。8.【分析】因为等底等高的平行四边形的面积是三角形面积的2倍,所以等底等高的平行四边形比三角形多的面积就是这个三角形的面积。据此解答。【解答】解:因为等底等高的平行四边形的面积是三角形面积的2倍,所以等底等高的平行四边形比三角形多的面积就是这个三角形的面积。答:这个三角形的面积是38平方厘米。故选:。【点评】此题考查的目的是理解掌握等底高的平行四边形和三角形面积之间的关系及应用。二.填空题(满分16分,每小题2分)9.【分析】已知梯形的下底是上底底倍,如果把上底延长18厘米,就变成一个平行四边形,根据梯形的上底是(厘米),根据求一个数是几倍是多少,用乘法求出下底。【解答】解:(厘米)(厘米)答:这个梯形的上底是9厘米,下底是27厘米。故答案为:9,27。【点评】此题考查的目的是理解掌握梯形、平行四边形的特征及应用。10.【分析】根据等高三角形的面积的比等于底边的比,因为乙三角形的底是甲三角形底的2倍,所以乙三角形的面积是甲三角形面积的2倍。据此解答即可。【解答】解:(平方厘米)答:乙三角形的面积是80平方厘米。故答案为:80。【点评】此题考查的目的是理解掌握等高三角形面积的比等于底边的比的应用。11.【分析】根据三角形的面积公式:,把数据代入公式求出这个三角形的面积,等底等高的平行四边形的面积是三角形面积的2倍,据此解答即可。【解答】解:(平方米)(平方米)答:这个三角形的面积是54平方米,与它等底等高的平行四边形的面积是108平方米。故答案为:54,108。【点评】此题主要考查三角形面积公式的灵活运用,等底等高的三角形与平行四边形面积之间的关系及应用。12.【分析】等底等高的平行四边形的面积是三角形面积的2倍,据此解答即可。【解答】解:(平方厘米)答:与这个三角形等底等高的平行四边形的面积是9.6平方厘米。故答案为:9.6。【点评】此题考查的目的是理解掌握等底等高的平行四边形和三角形面积之间的关系及应用。13.【分析】根据题意可知,梯形的上底是6厘米,如果把上底延长3厘米,原来的梯形就变成了正方形,由此可知,原来的梯形的下底和高都是,根据梯形的面积公式:,把数据代入公式解答。【解答】解:答:原来梯形的面积是。故答案为:。【点评】此题主要考查梯形面积公式的灵活运用,关键是求出梯形的下底和高。14.【分析】这个梯形上底缩短3厘米,则成为一个三角形,可以得出这个梯形的上底是3厘米,这个梯形上底增加2厘米,则成为一个正方形,说明梯形的下底和高都比上底长2厘米,求出梯形的下底和高之后,再根据梯形面积公式;(上底下底)高,计算这个梯形面积。【解答】解:(厘米)(平方厘米)答:这个梯形的面积是20平方厘米。故答案为:20平方厘米。【点评】本题考查梯形面积的计算方法,解题关键是熟练掌握梯形的面积公式,理解“梯形上底缩短3厘米,则成为一个三角形,可以得出这个梯形的上底是3厘米,这个梯形上底增加2厘米,则成为一个正方形,说明梯形的下底和高都比上底长2厘米”这个算理。15.【分析】先算出上底与下底的和,再根据梯形的面积(上底下底)高,求出面积即可。【解答】解:(米(米(平方米)答:围成的梯形面积是18平方米。故答案为:18平方米。【点评】熟练掌握梯形的面积公式,是解答此题的关键。16.【分析】根据题意可知,在这个梯形中剪下一个最大的平行四边形,这个平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高,根据平行四边形的面积底高,把数据代入公式解答。【解答】解:(平方分米)答:这块平行四边形铁皮的面积是54平方分米。故答案为:54平方分米。【点评】此题主要考查平行四边形的特征和面积公式的运用,关键是知道这个平行四边形的底等于梯形的上底,平行四边形的高等于梯形的高。三.判断题(满分8分,每小题2分)17.【分析】依据梯形的面积公式:,把数据代入公式可求出梯形的面积,再与104平方厘米比较得解.【解答】解:(平方厘米),答:面积是52平方厘米.故答案为:.【点评】本题主要考查了学生对梯形面积公式的实际应用,重点是掌握梯形的面积公式.18.【分析】已知梯形的上底是12分米,下底是8分米时,高是10厘米,根据梯形的面积公式:求出梯形的面积,再同20平方分米进行比较即可.【解答】解:10厘米分米(平方分米)答:梯形的面积是10平方分米.故答案为:.【点评】本题重点考查了学生对梯形面积公式的掌握.19.【分析】三角形的面积底高,而直角三角形的两条直角边分别是其底和高,代入面积公式即可求解.【解答】解:直角三角形的面积一条直角边另一条直角边.故一个直角三角形的面积是两条直角边乘积的一半的说法是正确的.故答案为:.【点评】此题主要考查三角形的面积的计算方法以及直角三角形的特点.20.【分析】根据三角形的面积公式,知道,把面积12平方米,高4米代入,计算出底,再判断即可。【解答】解:(米底应该是6米。故原说法错误。故答案为:。【点评】本题主要灵活利用三角形的面积公式解决问题。四.计算题(满分6分,每小题6分)21.【分析】根据平行四边形的面积底高,三角形的面积底高,梯形的面积(上底下底)高,解答此题即可。【解答】解:(1)(平方分米)(2)(平方分米)(3)(平方厘米)【点评】熟练掌握平行四边形、三角形和梯形的面积公式,是解答此题的关键。五.应用题(满分54分,每小题6分)22.【分析】由题意可知,草坪的形状是三角形,底是17米,高是20米,先利用三角形的面积公式:三角形面积底高求出它的面积,再根据单价数量总价;列式求出需要的钱数,再与20000元比较大小进行解答.【解答】解:(元因为,所以准备20000元钱不够.答:准备20000元钱不够.【点评】此题主要根据三角形的面积计算方法:和单价、数量、总价三者之间的关系解决问题.23.【分析】先利用三角形面积底高求出广告牌的面积,每平方米的用漆量已知,进而可以求出用漆量,再与50千克比较得解.【解答】解:(克55000克千克答:准备了50千克油漆不够.【点评】解答此题的关键是先求出广告牌的面积,再用面积乘每平方米的用漆量即可得解.24.【分析】根据三角形的面积底高,求出面积,再用面积除以5平方米即可。【解答】解:(棵答:这块桃树林一共有240棵桃树。【点评】熟练掌握三角形的面积公式,是解答此题的关键。25.【分析】通过观察图形可知,一面靠墙用篱笆围成一个直角梯形,梯形的高是20米,篱笆长80米,用篱笆的长减去高就是梯形上下底之和,根据梯形的面积公式:,把数据代入公式解答。【解答】解:(平方米)答:这个菜地的占地面积是600平方米。【点评】此题主要考查梯形面积公式的灵活运用,关键是熟记公式。26.【分析】根据梯形的面积公式:,那么,把数据代入公式解答。【解答】解:(米答:它的高是16米。【点评】此题主要考查梯形面积公式的灵活运用,根据是熟记公式。27.【分析】根据梯形的面积(上底下底)高可计算出这块装饰牌的面积,然后再用装饰牌的面积乘1得到油漆这块装饰牌需要的油漆的千克数,列式计算后再比较即可得到答案。【解答】解:(千克)20千克千克答:油漆这块装饰牌20千克的油漆够用。【点评】解答此题的关键是根据梯形的面积公式求得装饰牌的面积,然后列式计算后再比较即可。28.【分析】根据平行四边形的面积公式:,求出这块瓜地的面积,然后用瓜地的面积乘每平方米栽瓜苗的棵数即可.【解答】解:(棵答:共栽16000棵.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.29.【分析】根据平行四边形的面积公式:,求出面积,再根据单价数量总价,据此列式解答.【解答】解:(元答:这块地上的草皮可以卖6450元.【点评】此题主要考查平行四边形的面积公式在实际生活中的应用,关键是熟记公式.30.【分析】根据平行四边形的面积公式:,求出面积,再根据单价数量总价,据此列式解答.【解答】解:(元答:这块平行四边形地上的鲜花可以卖2400元.【点评】此题主要考查平行四边形的面积公式在实际生活中的应用,关键是熟记公式.
相关试卷
这是一份【期末专项复习】五年级上册数学期末高频易错专项强化突破B卷——2.多边形的面积(苏教版,含答案),共13页。试卷主要包含了多边形的面积,5平方厘米,06公顷等内容,欢迎下载使用。
这是一份【期末专项复习】北师大版数学四年级上册期末专项强化B卷——4.运算律(含答案),共14页。试卷主要包含了方向与位置等内容,欢迎下载使用。
这是一份【期末专项复习】北师大版数学五年级上册期末专项强化B卷——7.可能性,共14页。试卷主要包含了妙想做抛硬币的游戏等内容,欢迎下载使用。