终身会员
搜索
    上传资料 赚现金

    2023届新高考复习多选题与双空题 专题15新文化多选题

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【多选题与双空题满分训练】 专题15新文化多选题 原卷版.docx
    • 解析
      【多选题与双空题满分训练】 专题15新文化多选题 解析版.docx
    【多选题与双空题满分训练】 专题15新文化多选题 原卷版第1页
    【多选题与双空题满分训练】 专题15新文化多选题 原卷版第2页
    【多选题与双空题满分训练】 专题15新文化多选题 原卷版第3页
    【多选题与双空题满分训练】 专题15新文化多选题 解析版第1页
    【多选题与双空题满分训练】 专题15新文化多选题 解析版第2页
    【多选题与双空题满分训练】 专题15新文化多选题 解析版第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届新高考复习多选题与双空题 专题15新文化多选题

    展开

    这是一份2023届新高考复习多选题与双空题 专题15新文化多选题,文件包含多选题与双空题满分训练专题15新文化多选题解析版docx、多选题与双空题满分训练专题15新文化多选题原卷版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
    【多选题与双空题满分训练】 专题15 新文化多选题
    2022年高考冲刺和2023届高考复习满分训练
    新高考地区专用

    1.(2022·重庆·模拟预测)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有(       )
    A.将这1864人派谴完需要16天
    B.第十天派往筑堤的人数为134
    C.官府前6天共发放1467升大米
    D.官府前6天比后6天少发放1260升大米
    2.(2021·福建厦门·二模)达芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为,双曲余弦函数则以下正确的是(       )

    A.是奇函数 B.在上单调递减
    C., D.,
    3.(2021·广东实验中学模拟预测)《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,是《算经十书》中最重要的一部,其中将有三条棱互相平行且有一个面为梯形的五面体称之为“羡除”,则(       )
    A.“羡除”有且仅有两个面为三角形; B.“羡除”一定不是台体;
    C.不存在有两个面为平行四边形的“羡除”; D.“羡除”至多有两个面为梯形.
    4.(2021·河北沧州·三模)三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长,外径长,筒高,中部为棱长是的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则(       )

    A.该玉琮的体积为() B.该玉琮的体积为()
    C.该玉琮的表面积为() D.该玉琮的表面积为()
    5.(2022·山东菏泽·二模)设a,b为两个正数,定义a,b的算术平均数为,几何平均数为.上个世纪五十年代,美国数学家D.H. Lehmer提出了“Lehmer均值”,即,其中p为有理数.下列结论正确的是(       )
    A. B.
    C. D.
    6.(2022·重庆八中模拟预测)在1261年,我国南宋数学家杨辉所著的《详解九章算法》中提出了如图所示的三角形数表,这就是著名的“杨辉三角”,它是二项式系数在三角形中的一种几何排列.从第1行开始,第行从左至右的数字之和记为,如:,,,的前项和记为,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,,记为,的前项和记为,则下列说法正确的有(       )

    A.
    B.的前项和为
    C.
    D.
    7.(2022·全国·模拟预测)杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.根据杨辉三角判断下列说法正确的是(       )
    A.
    B.已知,则
    C.已知的展开式中第3项与第9项的二项式系数相等,则所有项的系数和为
    D.
    8.(2022·重庆·模拟预测)“出租车几何”或“曼哈顿距离”(Manhattan Distance)是由十九世纪的赫尔曼·闵可夫斯基所创词汇,是种被使用在几何度量空间的几何学用语.在平面直角坐标系内,对于任意两点、,定义它们之间的“欧几里得距离”,“曼哈顿距离”为,则下列说法正确的是(       )
    A.若点为线段上任意一点,则为定值
    B.对于平面上任意一点,若,则动点的轨迹长度为
    C.对于平面上任意三点、、,都有
    D.若、为椭圆上的两个动点,则最大值为
    9.(2022·重庆八中模拟预测)在通信工程中广泛运用的二进制只有“0,1”两个数码,二进制数与十进制数的转化方式为:二进制数等于十进制数,其中,,.通信中,信息包含在一串“0,1”序列中,记信息A的位宽为,代表“0,1”编码的数字个数.如,则.用“”表示两条信息的拼接,如,,则.数学家发明了一种信息压缩方法f∶将信息中的“0,1”序列中从左至右,单个出现的数码保持不变,连续出现的个相同的数码“j”,通过二进制下的替换原有数码,如1111000,应视作4个“1”和3个“0”,即压缩为二进制和,所以.下列说法不正确的是(       )
    A.对任意的信息A,总有
    B.对于任意的信息A,B,有
    C.若,则信息A共有4种可能
    D.若,则
    10.(2021·江苏·模拟预测)古希腊著名数学家阿波罗尼斯发现:平面内到两定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足=.设点P的轨迹为C,则下列结论正确的是(  )
    A.轨迹C的方程为(x+4)2+y2=9
    B.在x轴上存在异于A,B的两点D,E使得=
    C.当A,B,P三点不共线时,射线PO是∠APB的平分线
    D.在C上存在点M,使得
    11.(2022·山东·济南市历城第二中学模拟预测)下图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作的典范.该杯的主体部分可以近似看作是双曲线的右支与直线围成的曲边四边形绕y轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为,下底外直径为,双曲线C的左右顶点为,则(       )

    A.双曲线C的方程为
    B.双曲线与双曲线C有相同的渐近线
    C.存在一点,使过该点的任意直线与双曲线C有两个交点
    D.双曲线C上存在无数个点,使它与两点的连线的斜率之积为3
    12.(2022·重庆·模拟预测)阿基米德(公元前287年——公元前212年)是古希腊伟大的物理学家、数学家、天文学家,不仅在物理学方面贡献巨大,还享有“数学之神”的称号.抛物线上任意两点A、B处的切线交于点P,称为“阿基米德三角形”.已知抛物线C:的焦点为F,过A、B两点的直线的方程为,关于“阿基米德三角形”,下列结论正确的是(       )
    A. B.
    C.点P的坐标为 D.
    13.(2022·辽宁·育明高中一模)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O的半径为2,点P是圆O内的定点,且,弦AC、BD均过点P,则下列说法正确的是(       )

    A.为定值 B.的取值范围是
    C.当时,为定值 D.的最大值为12
    14.(2022·全国·模拟预测)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,的距离之比为定值的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,,点满足.点的轨迹为曲线,下列结论正确的是(       )
    A.曲线的方程为
    B.曲线被轴截得的弦长为
    C.直线与曲线相切
    D.是曲线上任意一点,当的面积最大时点的坐标为
    15.(2022·福建福建·模拟预测)下图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作的典范.该杯的主体部分可以近似看作是双曲线的右支与直线,,围成的曲边四边形ABMN绕y轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为,下底外直径为,双曲线C与坐标轴交于D,E,则(       )

    A.双曲线C的方程为
    B.双曲线与双曲线C共渐近线
    C.存在一点,使过该点的任意直线与双曲线C有两个交点
    D.存在无数个点,使它与D,E两点的连线的斜率之积为3
    16.(2022·湖南永州·二模)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆的离心率为,、分别为椭圆的左、右焦点,点在椭圆上,直线,则(       )
    A.直线与蒙日圆相切
    B.的蒙日圆的方程为
    C.记点到直线的距离为,则的最小值为
    D.若矩形的四条边均与相切,则矩形的面积的最大值为
    17.(2021·重庆市杨家坪中学模拟预测)英国数学家牛顿在17世纪给出了一种近似求方程根的方法—牛顿迭代法.做法如下:如图,设是的根,选取作为初始近似值,过点作曲线的切线,与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,得到的近似值序列,其中,称是的次近似值,这种求方程近似解的方法称为牛顿迭代法.若使用该方法求方程的近似解,则(       )

    A.若取初始近似值为1,则该方程解得二次近似值为
    B.若取初始近似值为2,则该方程近似解的二次近似值为
    C.
    D.
    18.(2022·江苏·金陵中学模拟预测)笛卡尔是西方哲学思想的奠基人之一,“我思故我在”便是他提出的著名的哲学命题;同时,笛卡尔也是一位家喻户晓的数学家,除了发明坐标系以外,笛卡尔叶形线也是他的杰出作品,其方程为x3+y3=3axy,a为非零常数.下列关于笛卡尔叶形线的说法中正确的是(       )
    A.图象关于直线y=x对称
    B.图象与直线x+y+a=0有2个交点
    C.当a>0时,图象在第三象限没有分布
    D.当a=1,x、y>0时,y的最大值为
    19.(2021·山东·泰安一中模拟预测)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走97里,以后每天比前一天少走里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是(       )
    A.长安与齐国两地相距1530里
    B.3天后,两马之间的距离为里
    C.良马从第6天开始返回迎接驽马
    D.8天后,两马之间的距离为里
    20.(2021·全国·模拟预测)若数列满足,,,则称数列为斐波那契数列,1680年卡西尼发现了斐波那契数列的一个重要性质:().若斐波那契数列满足,则下列结论正确的是(       )
    A.k可以是任意正奇数
    B.k可以是任意正偶数
    C.若k是奇数,则k的最大值是999
    D.若k是偶数,则k的最大值是500
    21.(2020·山东青岛·模拟预测)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹丈,1丈尺,若这个月有30天,记该女子这个月中第天所织布的尺数为,,则(       )
    A. B.数列是等比数列
    C. D.
    22.(2022·北京·101中学模拟预测)根据中国古代重要的数学著作《孙子算经》记载,我国古代诸侯的等级自低到高分为:男、子、伯、侯、公五个等级,现有每个级别的诸侯各一人,君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分处(为正整数),按这种分法,下列结论正确的是(       )
    A.为“男”的诸侯分到的领地不大于6处的概率是
    B.为“子”的诸侯分到的领地不小于6处的概率是
    C.为“伯”的诸侯分到的领地恰好为10处的概率是1
    D.为“公”的诸侯恰好分到16处领地的概率是
    23.(2021·全国·模拟预测)数学史上有很多著名的数列,在数学中有着重要的地位.世纪初意大利数学家斐波那契从兔子繁殖问题引出的一个数列:,,,,,,,……,称之为斐波那契数列,满足,,.19世纪法国数学家卢卡斯提出数列:,,,,,,,……,称之为卢卡斯数列,满足,,.那么下列说法正确的有(       )
    A. B.不是等比数列
    C. D.
    24.(2021·山东·肥城市教学研究中心模拟预测)巴塞尔问题是一个著名的数论问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由欧拉在1735年解决.由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题,马上就出名了,当时他28岁.这个问题是精确计算所有平方数倒数的和,也就是以下级数的和.巴塞尔问题是寻找这个数的准确值,欧拉发现的准确值是.不过遗憾的是:若把上式中的指数换成其他的数,例如,则的精确值为多少,至今未解决.下列说法正确的是(       )
    A.所有正奇数的平方倒数和为
    B.记,则的值为
    C.的值不超过
    D.记,则存在正常数,使得对任意正整数,恒有
    25.(2021·江苏南通·模拟预测)法国数学家柯西(A.Cauchy,研究了函数的相关性质,并证明了在处的各阶导数均为对于函数,有如下判断,其中正确的有(       )
    A.是偶函数
    B.在是上单调递减
    C.
    D.若恒成立,则的最小值为1
    26.(2021·海南·三模)如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心为圆心的圆形轨道Ⅰ上绕月飞行,然后在点处变轨进入以为一个焦点的椭圆轨道Ⅱ上绕月飞行,最后在点处变轨进入以为圆心的圆形轨道Ⅲ绕月飞行,设圆形轨道Ⅰ的半径为,圆形轨道Ⅲ的半径为,则以下说法正确的是(       )

    A.椭圆轨道Ⅱ上任意两点距离最大为
    B.椭圆轨道Ⅱ的焦距为
    C.若不变,则越大,椭圆轨道Ⅱ的短轴越短
    D.若不变,则越小椭圆轨道Ⅱ的离心率越大
    27.(2022·重庆实验外国语学校一模)“,数列”在通信技术有着重要应用,它是指各项的值都等于或的数列.设是一个有限,数列,表示把中每个都变为,,每个都变为,,所得到的新的,数列,例如,则.设是一个有限,数列,定义,、、、.则下列说法正确的是(       )
    A.若,则
    B.对任意有限,数列、中和的个数总相等
    C.中的,数对的个数总与中的,数对的个数相等
    D.若,则中,数对的个数为
    28.(2022·山东济南·一模)平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的.已知在平面直角坐标系中,,,动点P满足,其轨迹为一条连续的封闭曲线C.则下列结论正确的是(       )
    A.曲线C与y轴的交点为, B.曲线C关于x轴对称
    C.面积的最大值为2 D.的取值范围是
    29.(2022·重庆·模拟预测)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD,其中,动点P在上(含端点),连接OP交扇形OAB的弧于点Q,且,则下列说法正确的是(       )

    图1                                          图2
    A.若,则 B.若,则
    C. D.
    30.(2022·广东惠州·一模)近年来,纳米晶的多项技术和方法在水软化领域均有重要应用.纳米晶体结构众多,下图是一种纳米晶的结构示意图,其是由正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为n的几何体,则下列说法正确的有(       )

    A.该结构的纳米晶个体的表面积为
    B.该结构的纳米晶个体的体积为
    C.该结构的纳米晶个体外接球的表面积为
    D.二面角A1−A2A3−B3的余弦值为
    31.(2022·广东广州·一模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段,记为第1次操作:再将剩下的两个区间,分别均分为三段,并各自去掉中间的区间段,记为第2次操作:;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段;操作过程不断地进行下去,剩下的区间集合即是“康托三分集”.若第n次操作去掉的区间长度记为,则(       )
    A. B.
    C. D.
    32.(2021·辽宁·模拟预测)斐波那契数列又称黄金分割数列,因数学家列昂纳多•斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用表示斐波那契数列的第项,则数列满足:,记,则下列结论正确的是(       )
    A. B.
    C. D.
    33.(2021·全国·模拟预测)(多选)材料:函数是描述客观世界中变量关系和规律的最为基本的数学语言和工具,初等函数是由常数和基本初等函数经过有限次的有理运算及有限次的复合所产生的,且能用一个解析式表示的函数,如函数(),我们可以作变形:,所以可看作是由函数和复合而成的,即()为初等函数.根据以上材料,对于初等函数()的说法正确的是(       )
    A.无极小值 B.有极小值1 C.无极大值 D.有极大值
    34.(2021·重庆·模拟预测)分形几何学是一门以不规则几何形态为研究对象的几何学,分形几何具有自身相似性,从它的任何一个局部经过放大,都可以得到一个和整体全等的图形.如下图的雪花曲线,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图2,如此继续下去,得图(3)...记为第个图形的边长,记为第个图形的周长,为的前项和,则下列说法正确的是(   )

    A. B.
    C.若为中的不同两项,且,则最小值是1
    D.若恒成立,则的最小值为
    35.(2021·重庆·模拟预测)筒车是我国古代发明的一种灌溉工具,因其经济又环保,至今还在农业生产中得到使用(图1),明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图2).

    现有一个半径为3米的筒车按逆时针方向每分钟旋转1圈,简车的轴心距离水面的高度为2米,设简车上的某个盛水筒P到水面的距离为(单位:米)(在水面下则为负数),若以盛水筒P刚浮出水面为初始时刻,经过1秒后,下列命题正确的是(       )(参考数据:)
    A.,其中,且
    B.,其中,且
    C.当时,盛水筒再次进入水中
    D.当时,盛水筒到达最高点
    36.(2021·辽宁实验中学二模)十七世纪至十八世纪的德国数学家莱布尼兹是世界上第一个提出二进制记数法的人,用二进制记数只需数字0和1,对于整数可理解为逢二进,例如:自然数1在二进制中就表示为1,2表示为10,3表示为11,7表示为111,即,,其中,或,记为上述表示中0的个数,如,.则下列说法中正确的是(       ).
    A.
    B.
    C.
    D.1到127这些自然数的二进制表示中的自然数有35个
    37.(2021·福建省福州第一中学模拟预测)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为,,,边长为斐波那契数的正方形所对应扇形面积记为,则(       )

    A. B.
    C. D.
    38.(2022·广东广州·二模)我们常用的数是十进制数,如,表示十进制的数要用10个数码.0,1,2,3,4,5,6,7,8,9;而电子计算机用的数是二进制数,只需两个数码0和1,如四位二进制的数,等于十进制的数13.把m位n进制中的最大数记为,其中m,,为十进制的数,则下列结论中正确的是(       )
    A.
    B.
    C.
    D.
    39.(2022·湖南·雅礼中学二模)勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分,如图所示,若正四面体ABCD的棱长为a,则(       )

    A.能够容纳勒洛四面体的正方体的棱长的最小值为a
    B.勒洛四面体能够容纳的最大球的半径为
    C.勒洛四面体的截面面积的最大值为
    D.勒洛四面体的体积
    40.(2022·重庆南开中学模拟预测)由倍角公式,可知可以表示为的二次多项式.一般地,存在一个()次多项式(),使得,这些多项式称为切比雪夫(P.L.Tschebyscheff)多项式.运用探究切比雪夫多项式的方法可得(       )
    A. B.
    C. D.

    相关试卷

    2023届新高考复习多选题与双空题 专题16双空题综合:

    这是一份2023届新高考复习多选题与双空题 专题16双空题综合,文件包含多选题与双空题满分训练专题16双空题综合解析版docx、多选题与双空题满分训练专题16双空题综合原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    2023届新高考复习多选题与双空题 专题11复数多选题:

    这是一份2023届新高考复习多选题与双空题 专题11复数多选题,文件包含多选题与双空题满分训练专题11复数多选题解析版docx、多选题与双空题满分训练专题11复数多选题原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    2023届新高考复习多选题与双空题 专题8数列多选题:

    这是一份2023届新高考复习多选题与双空题 专题8数列多选题,文件包含多选题与双空题满分训练专题8数列多选题解析版docx、多选题与双空题满分训练专题8数列多选题原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map