专题 17.14 勾股定理中考真题专练(巩固篇)(专项练习)-八年级数学下册基础知识专项讲练(人教版)
展开专题 17.14 勾股定理中考真题专练(巩固篇)(专项练习)
一、单选题
1.(2021·西藏·中考真题)如图,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,点P是线段AC上一动点,点M在线段AB上,当AM=AB时,PB+PM的最小值为( )
A.3 B.2 C.2+2 D.3+3
2.(2021·内蒙古鄂尔多斯·中考真题)如图,在中,,将边沿折叠,使点B落在上的点处,再将边沿折叠,使点A落在的延长线上的点处,两条折痕与斜边分别交于点N、M,则线段的长为( )
A. B. C. D.
3.(2021·湖北黄石·中考真题)如图,在中,,按以下步骤作图:①以为圆心,任意长为半径作弧,分别交、于、两点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点;③作射线,交边于点.若,,则线段的长为( )
A.3 B. C. D.
4.(2021·陕西·中考真题)如图,、、、是四根长度均为5cm的火柴棒,点A、C、E共线.若,,则线段的长度为( )
A.6 cm B.7 cm C. D.8cm
5.(2021·贵州铜仁·中考真题)如图,在中,,,,按下列步骤作图:步骤1:以点为圆心,小于的长为半径作弧分别交、于点、.步骤2:分别以点、为圆心,大于的长为半径作弧,两弧交于点.步骤3:作射线交于点.则的长为( )
A.6 B. C. D.
6.(2021·山东枣庄·中考真题)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是( )
A. B.3 C.3 D.3
7.(2020·山东烟台·中考真题)如图,为等腰直角三角形,OA1=1,以斜边OA2为直角边作等腰直角三角形OA2A3,再以OA3为直角边作等腰直角三角形OA3A4,…,按此规律作下去,则OAn的长度为( )
A.()n B.()n﹣1 C.()n D.()n﹣1
8.(2020·广西·中考真题)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )
A.寸 B.寸 C.寸 D.寸
9.(2020·陕西·中考真题)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A. B. C. D.
10.(2020·河北·中考真题)如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是( )
A.从点向北偏西45°走到达
B.公路的走向是南偏西45°
C.公路的走向是北偏东45°
D.从点向北走后,再向西走到达
11.(2020·重庆·中考真题)如图,三角形纸片ABC,点D是BC边上一点,连接AD,把沿着AD翻折,得到,DE与AC交于点G,连接BE交AD于点F.若,,,的面积为2,则点F到BC的距离为( )
A. B. C. D.
12.(2020·贵州铜仁·中考真题)已知等边三角形一边上的高为2,则它的边长为( )
A.2 B.3 C.4 D.4
二、填空题
13.(2021·四川内江·中考真题)已知,在中,,,,则的面积为 __.
14.(2021·青海西宁·中考真题)如图,是等边三角形,,N是的中点,是边上的中线,M是上的一个动点,连接,则的最小值是________.
15.(2021·西藏·中考真题)如图.在Rt△ABC中,∠A=90°,AC=4.按以下步骤作图:(1)以点B为圆心,适当长为半径画弧,分别交线段BA,BC于点M,N;(2)以点C为圆心,BM长为半径画弧,交线段CB于点D;(3)以点D为圆心,MN长为半径画弧,与第2步中所面的弧相交于点E;(4)过点E画射线CE,与AB相交于点F.当AF=3时,BC的长是_______________.
16.(2021·辽宁朝阳·中考真题)如图,在平面直角坐标系中,点A的坐标为(5,0),点M的坐标为(0,4),过点M作MNx轴,点P在射线MN上,若MAP为等腰三角形,则点P的坐标为___________.
17.(2021·辽宁锦州·中考真题)如图,在△ABC中,AC=4,∠A=60°,∠B=45°,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为_________________.
18.(2021·江苏镇江·中考真题)如图,点A,B,C,O在网格中小正方形的顶点处,直线l经过点C,O,将ABC沿l平移得到MNO,M是A的对应点,再将这两个三角形沿l翻折,P,Q分别是A,M的对应点.已知网格中每个小正方形的边长都等于1,则PQ的长为__.
19.(2021·四川眉山·中考真题)如图,中,,,平分交于点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于点和点,作直线,交于点,则的长为______.
20.(2021·浙江·中考真题)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中的长应是______.
21.(2020·四川·中考真题)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行_____海里就开始有触礁的危险.
22.(2020·辽宁营口·中考真题)如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为_____.
23.(2020·湖南娄底·中考真题)由4个直角边长分别为a,b的直角三角形围成的“赵爽弦图”如图所示,根据大正方形的面积等于小正方形的面积与4个直角三角形的面积的和证明了勾股定理,还可以用来证明结论:若、且为定值,则当_______时,取得最大值.
24.(2020·内蒙古通辽·中考真题)如图,在中,,点P在斜边上,以为直角边作等腰直角三角形,,则三者之间的数量关系是_____.
25.(2020·湖南邵阳·中考真题)如图,线段,用尺规作图法按如下步骤作图.
(1)过点B作的垂线,并在垂线上取;
(2)连接,以点C为圆心,为半径画弧,交于点E;
(3)以点A为圆心,为半径画弧,交于点D.即点D为线段的黄金分割点.
则线段的长度约为___________(结果保留两位小数,参考数据:)
26.(2020·湖北黄冈·中考真题)我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_______________尺.
27.(2020·江苏扬州·中考真题)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面________尺高.
28.(2020·山东聊城·中考真题)如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.
三、解答题
29.(2020·浙江温州·中考真题)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE;
(2)连结AE,当BC=5,AC=12时,求AE的长.
30.(2021·江苏盐城·中考真题)如图,点是数轴上表示实数的点.
(1)用直尺和圆规在数轴上作出表示实数的的点;(保留作图痕迹,不写作法)
(2)利用数轴比较和的大小,并说明理由.
31.(2021·浙江台州·中考真题)如图,在四边形ABCD中,AB=AD=20,BC=DC=10
(1)求证:△ABC≌△ADC;
(2)当∠BCA=45°时,求∠BAD的度数.
32.(2021·湖南长沙·中考真题)如图,在中,,垂足为,,延长至,使得,连接.
(1)求证:;
(2)若,,求的周长和面积.
33.(2021·广东深圳·中考真题)如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为________.
34.(2021·广西柳州·中考真题)在一次海上救援中,两艘专业救助船同时收到某事故渔船的求救讯息,已知此时救助船在的正北方向,事故渔船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.
(1)求收到求救讯息时事故渔船与救助船之间的距离;
(2)若救助船A,分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.
参考答案
1.B
【解析】
【分析】
作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H⊥AB交H点,在Rt△BB'H中,B'H=3,HB=3,可求MH=1,在Rt△MHB'中,B'M=2,所以PB+PM的最小值为2.
【详解】
解:作B点关于AC的对称点B',连接B'M交AC于点P,
∴BP=B'P,BC=B'C,
∴PB+PM=B'P+PM≥B'M,
∴PB+PM的最小值为B'M的长,
过点B'作B'H⊥AB交H点,
∵∠A=30°,∠C=90°,
∴∠CBA=60°,
∵AB=6,
∴BC=3,
∴BB'=BC+B'C=6,
在Rt△BB'H中,∠B'BH=60°,
∴∠BB'H=30°,
∴BH=3,
由勾股定理可得:,
∴AH=AB-BH=3,
∵AM=AB,
∴AM=2,
∴MH=AH-AM=1,
在Rt△MHB'中,,
∴PB+PM的最小值为2,
故选:B.
【分析】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB+PM的最小值为B'M的长.
2.B
【解析】
【分析】
利用勾股定理求出AB=10,利用等积法求出CN=,从而得AN=,再证明∠NMC=∠NCM=45°,进而即可得到答案.
【详解】
解:∵
∴AB=,
∵S△ABC=×AB×CN=×AC×BC
∴CN=,
∵AN=,
∵折叠
∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,
∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,
∴∠B'CN +∠A'CM=45°,
∴∠MCN=45°,且CN⊥AB,
∴∠NMC=∠NCM=45°,
∴MN=CN=,
∴A'M=AM=AN−MN=-=.
故选B.
【分析】本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.
3.A
【解析】
【分析】
由尺规作图痕迹可知,BD是∠ABC的角平分线,过D点作DH⊥AB于H点,设DC=DH=x则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,在Rt△ADH中,由勾股定理得到 ,由此即可求出x的值.
【详解】
解:由尺规作图痕迹可知,BD是∠ABC的角平分线,
过D点作DH⊥AB于H点,
∵∠C=∠DHB=90°,
∴DC=DH,
,
设DC=DH=x,则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,
在Rt△ADH中,由勾股定理:,
代入数据:,解得,故,
故选:A.
【分析】本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.
4.D
【解析】
【分析】
分别过B、D作AE的垂线,垂足分别为F、G,证明,即可证明,进一步计算即可得出答案.
【详解】
解:分别过B、D作AE的垂线,垂足分别为F、G,
∵,,
∴,
∴,
在和中;
,
∴,
∴BF=CG,
∵,
∴均为等腰三角形,
∵,
∴,
∴,
∴,
故选:D.
【分析】本题主要考查等腰三角形判定与性质,全等三角形判定与性质以及勾股定理等知识点,正确画出辅助线是解决本题的关键.
5.B
【解析】
【分析】
过点F作FG⊥AB于点G,根据作图信息及角平分线的性质可推出FC=FG,再利用等面积法求出,最后由勾股定理即可求得结果.
【详解】
解:过点F作FG⊥AB于点G,
由尺规作图可知,AF平分∠BAC,
∵,
∴FC⊥AC,
∴FC=FG,
在中,,,,
∴,
∵,
∴,
即,
解得,
在中,由勾股定理得;
故选:B.
【分析】本题考查了角平分线的作法与性质、勾股定理,熟练掌握角平分线的作法与性质及利用勾股定理解直角三角形是解题的关键.
6.B
【解析】
【分析】
折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出∠AFB=90°,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长.
【详解】
解:
AB=AC,
,
故选B.
【分析】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.
7.B
【解析】
【分析】
利用等腰直角三角形的性质以及勾股定理分别求出各边长,依据规律即可得出答案.
【详解】
解:∵△OA1A2为等腰直角三角形,OA1=1,
∴OA2=;
∵△OA2A3为等腰直角三角形,
∴OA3=2=;
∵△OA3A4为等腰直角三角形,
∴OA4=2=.
∵△OA4A5为等腰直角三角形,
∴OA5=4=,
……
∴OAn的长度为()n﹣1,
故选:B.
【分析】此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.
8.C
【解析】
【分析】
画出直角三角形,根据勾股定理即可得到结论.
【详解】
设OA=OB=AD=BC=,过D作DE⊥AB于E,
则DE=10,OE=CD=1,AE=.
在Rt△ADE中,
,即,
解得.
故门的宽度(两扇门的和)AB为101寸.
故选:C.
【分析】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.
9.D
【解析】
【分析】
根据勾股定理计算AC的长,利用面积和差关系可求的面积,由三角形的面积法求高即可.
【详解】
解:由勾股定理得:AC==,
∵S△ABC=3×3﹣=,
∴,
∴,
∴BD=,
故选:D.
【分析】本题考查了网格与勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.
10.A
【解析】
【分析】
根据方位角的定义及勾股定理逐个分析即可.
【详解】
解:如图所示,过P点作AB的垂线PH,
选项A:∵BP=AP=6km,且∠BPA=90°,∴△PAB为等腰直角三角形,∠PAB=∠PBA=45°,
又PH⊥AB,∴△PAH为等腰直角三角形,
∴PH=km,故选项A错误;
选项B:站在公路上向西南方向看,公路的走向是南偏西45°,故选项B正确;
选项C:站在公路上向东北方向看,公路的走向是北偏东45°,故选项C正确;
选项D:从点向北走后到达BP中点E,此时EH为△PEH的中位线,故EH=AP=3,故再向西走到达,故选项D正确.
故选:A.
【分析】本题考查了方位角问题及等腰直角三角形、中位线等相关知识点,方向角一般以观测者的位置为中心,所以观测者不同,方向就正好相反,但角度不变.
11.B
【解析】
【分析】
首先求出ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据•BD•h=•BF•DF,求出BD即可解决问题.
【详解】
解:∵DG=GE,
∴S△ADG=S△AEG=2,
∴S△ADE=4,
由翻折可知,ADB≌ADE,BE⊥AD,
∴S△ABD=S△ADE=4,∠BFD=90°,
∴(AF+DF)BF=4,
∴(3+DF)2=4,
∴DF=1,
∴DB===,
设点F到BD的距离为h,
则•BD•h=•BF•DF,
∴h=,
故选:B.
【分析】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
12.C
【解析】
【分析】
根据等边三角形的性质:三线合一,利用勾股定理可求解即可.
【详解】
根据等边三角形的三线合一性质:
设它的边长为x,可得:,
解得:x=4,x=﹣4(舍去),
故选:C.
【分析】本题主要考查了等腰三角形“三线合一”的性质,运用勾股定理列出方程求解是解答此类问题的常用方法.
13.2或14#14或2
【解析】
【分析】
过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.
【详解】
解:过点作边的高,
中,,,
,
在中,,
,
①是钝角三角形时,
,
;
②是锐角三角形时,
,
,
故答案为:2或14.
【分析】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.
14.
【解析】
【分析】
根据题意可知要求BM+MN的最小值,需考虑通过作辅助线转化BM,MN的值,从而找出其最小值,进而根据勾股定理求出CN,即可求出答案.
【详解】
解:连接CN,与AD交于点M,连接BM.(根据两点之间线段最短;点到直线垂直距离最短),是边上的中线即C和B关于AD对称,则BM+MN=CN,则CN就是BM+MN的最小值.
∵是等边三角形,,N是的中点,
∴AC=AB=6,AN=AB=3, ,
∴.
即BM+MN的最小值为.
故答案为:.
【分析】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.
15.4
【解析】
【分析】
利用基本作图得到∠FCB=∠B,则FC=FB,再利用勾股定理计算出CF=5,则AB=8,然后利用勾股定理可计算出BC的长.
【详解】
解:由作法得∠FCB=∠B,
∴FC=FB,
在Rt△ACF中,
∵∠A=90°,AC=4,AF=3,
∴CF==5,
∴BF=5,
∴AB=AF+BF=8,
在Rt△ABC中,BC===4.
故答案为4.
【分析】本题考查了作图﹣基本作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质作图,逐步操作即可.
16.(,4)或(,4)或(10,4)
【解析】
【分析】
分三种情况:①PM=PA,②MP=MA,③AM=AP,分别画图,根据等腰三角形的性质和两点的距离公式,即可求解.
【详解】
解:设点P的坐标为(x,4),
分三种情况:①PM=PA,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴PM=x,PA= ,
∵PM=PA,
∴x=,解得:x=,
∴点P的坐标为(,4);
②MP=MA,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴MP=x,MA==,
∵MP=MA,
∴x=,
∴点P的坐标为(,4);
③AM=AP,
∵点A的坐标为(5,0),点M的坐标为(0,4),
∴AP=,MA==,
∵AM=AP,
∴=,解得:x1=10,x2=0(舍去),
∴点P的坐标为(10,4);
综上,点P的坐标为(,4)或(,4)或(10,4).
故答案为:(,4)或(,4)或(10,4).
【分析】本题考查了等腰三角形的性质和坐标与图形的性质,熟练掌握坐标与图形特征,利用坐标特征和勾股定理求线段的长是解题的关键.
17.2+2
【解析】
【分析】
根据线段垂直平分线的性质得到DB=DC,根据三角形的外角性质得到∠ADC=90°,根据含30°角的直角三角形的性质求出AD,根据勾股定理求出DC,进而求出AB.
【详解】
解:∵DE是BC的垂直平分线,
∴DB=DC,
∴∠DCB=∠B=45°,
∴∠ADC=∠DCB+∠B=90°,
∵∠A=60°,
∴∠ACD=30°,
∴AD=AC=2,
由勾股定理得:DC===2,
∴DB=DC=2,
∴AB=AD+DB=2+2,
故答案为:2+2.
【分析】本题主要考查了三角形外角性质,线段垂直平分线的性质,直角三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.
18.
【解析】
【分析】
连接PQ,AM,根据PQ=AM即可解答.
【详解】
解:连接PQ,AM,
由图形变换可知:PQ=AM,
由勾股定理得:AM=,
∴PQ=.
故答案为:.
【分析】本题主要考查了翻折的性质,勾股定理等知识,明确翻折前后对应线段相等是解题的关键.
19.
【解析】
【分析】
先由等腰三角形性质求出CD以及,再利用作图方式确定MN垂直平分AC,得到CE=AE,最后利用勾股定理即可求解.
【详解】
解:∵ 中,, ,平分
∴,且,(等腰三角形“三线合一”)
∴,
由分别以点和点为圆心,大于的长为半径作弧,两弧相交于点和点,作直线,可知,MN垂直平分AC,
如图,连接CE,
∴,
∴,
在中,,
∴,
解得:;
∴的长为;
故答案为:.
【分析】本题综合考查了等腰三角形的性质、尺规作图线段的垂直平分线、线段的垂直平分线的性质、勾股定理等内容,要求学生理解并掌握相关概念,能熟练运用勾股定理求直角三角形的线段长或建立两线段之间的关系等.
20.
【解析】
【分析】
根据裁剪和拼接的线段关系可知,,在中应用勾股定理即可求解.
【详解】
解:∵地毯平均分成了3份,
∴每一份的边长为,
∴,
在中,根据勾股定理可得,
根据裁剪可知,
∴,
故答案为:.
【分析】本题考查勾股定理,根据裁剪找出对应面积和线段的关系是解题的关键.
21.4.5
【解析】
【分析】
过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.
【详解】
解:
如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,
∵∠CAD=30°,∠CAB=60°,
∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,
∴∠ABD=∠BAD,
∴BD=AD=12海里,
∵∠CAD=30°,∠ACD=90°,
∴CD=AD=6海里,
由勾股定理得:AC==6(海里),
如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,
在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.
解得x=4.5.
渔船还需航行 4.5海里就开始有触礁的危险.
故答案是:4.5.
【分析】本题主要考查方位角及勾股定理,关键是根据题意得到角的度数,然后利用特殊角的关系及勾股定理进行求解即可.
22.3
【解析】
【分析】
过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值为CF,根据等边三角形的性质得到BF=AB=6=3,根据勾股定理即可得到结论.
【详解】
解:过C作CF⊥AB交AD于E,
则此时,CE+EF的值最小,且CE+EF的最小值为CF,
∵△ABC为等边三角形,边长为6,
∴BF=AB=6=3,
∴CF===3,
∴CE+EF的最小值为3,
故答案为:3.
【分析】本题考查了轴对称-最短路线问题,解题的关键是画出符合条件的图形.
23.=
【解析】
【分析】
设为定值,则,先根据“张爽弦图”得出,再利用平方数的非负性即可得.
【详解】
设为定值,则
由“张爽弦图”可知,
即
要使的值最大,则需最小
又
当时,取得最小值,最小值为0
则当时,取得最大值,最大值为
故答案为:.
【分析】本题考查了勾股定理的应用、平方数的非负性,掌握勾股定理是解题关键.
24.PA2+PB2=2PC2
【解析】
【分析】
把AP2和PB2都用PC和CD表示出来,结合Rt△PCD中,可找到PC和PD和CD的关系,从而可找到PA2,PB2,PC2三者之间的数量关系;
【详解】
解:过点C作CD⊥AB,交AB于点D
∵△ACB为等腰直角三角形,CD⊥AB,
∴CD=AD=DB,
∵PA2=(AD-PD)2=(CD-PD)2=CD2-2CD•PD+PD2,
PB2=(BD+PD)2=(CD+PD)2=CD2-2CD•PD+PD2,
∴PA2+PB2=2CD2+2PD2=2(CD2+PD2),
在Rt△PCD中,由勾股定理可得PC2=CD2+PD2,
∴PA2+PB2=2PC2,
故答案为PA2+PB2=2PC2.
【分析】本题考查了等腰直角三角形的性质,勾股定理的应用,关键是作出辅助线,利用三线合一进行论证.
25.6.18
【解析】
【分析】
根据作图得△ABC为直角三角形,,AE=AD,
根据勾股定理求出AC,再求出AE,即可求出AD.
【详解】
解:由作图得△ABC为直角三角形,,AE=AD,
∴cm,
∴cm,
∴cm.
故答案为:6.18
【分析】本题考查了尺规作图,勾股定理等知识,根据作图步骤得到相关已知条件是解题关键.
26.12
【解析】
【分析】
首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2即可.
【详解】
设这个水池深x尺,
由题意得,x2+52=(x+1)2,
解得:x=12
答:这个水池深12尺.
故答案为:12.
【分析】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
27.
【解析】
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10-x)尺,利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2,
解得:;
故答案为:.
【分析】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
28.
【解析】
【分析】
先求出AC=BC=2,作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小,即此时四边形的周长最小;作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,根据勾股定理求出AE即可.
【详解】
解:∵,点的纵坐标为1,
∴AC∥x轴,
∵点,是第一象限角平分线上的两点,
∴∠BAC=45°,
∵,
∴∠BAC=∠ABC=45°,
∴∠C=90°,
∴BC∥y轴,
∴AC=BC=2,
作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小,
∴此时四边形的周长最小,
作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,
∴EG=2,GA=4,
在Rt△AGE中,
,
∴ 四边形的周长最小值为2+2+=4+ .
【分析】本题考查了四条线段和最短问题.由于AC=BC=2,因此本题实质就是求AD+BD最小值,从而转化为“将军饮马”问题,这是解题关键.
29.(1)见解析;(2)13
【解析】
【分析】
根据题意可知,本题考查平行的性质,全等三角形的判定和勾股定理,根据判定定理,运用两直线平行内错角相等再通过AAS以及勾股定理进行求解.
【详解】
解:(1)∵
∴
在△ABC和△DCE中
∴△ABC≌△DCE
(2)由(1)可得BC=CE=5
在直角三角形ACE中
【分析】本题考查平行的性质,全等三角形的判定和勾股定理,熟练掌握判定定理运用以及平行的性质是解决此类问题的关键.
30.(1)见解析;(2),见解析
【解析】
【分析】
(1)利用勾股定理构造直角三角形得出斜边为,再利用圆规画圆弧即可得到点.
(2)在数轴上比较,越靠右边的数越大.
【详解】
解:(1)如图所示,点即为所求.
(2)如图所示,点在点的右侧,所以
【分析】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.
31.(1)见详解;(2)60°
【解析】
【分析】
(1)通过SSS证明△ABC≌△ADC,即可;
(2)先证明AC垂直平分BD,从而得是等腰直角三角形,求出BO= 10,从而得BD=20,是等边三角形,进而即可求解.
【详解】
(1)证明:在△ABC和△ADC中,
∵
∴△ABC≌△ADC(SSS),
(2)连接BD,交AC于点O,
∵△ABC≌△ADC,
∴AB=AD,BC=DC,
∴AC垂直平分BD,即:∠AOB=∠BOC=90°,
又∵∠BCA=45°,
∴是等腰直角三角形,
∴BO=BC÷=10÷=10,
∴BD=2BO=20,
∵AB=AD=20,
∴是等边三角形,
∴∠BAD=60°.
【分析】本题主要考查全等三角形的判定和性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,掌握垂直平分线的判定定理,是解题的关键.
32.(1)证明见解析;(2)周长为,面积为22.
【解析】
【分析】
(1)先根据垂直的定义可得,再根据三角形全等的判定定理与性质即可得证;
(2)先根据全等三角形的性质可得,从而可得,再利用勾股定理可得,从而可得,然后利用勾股定理可得,最后利用三角形的周长公式和面积公式即可得.
【详解】
(1)证明:,
,
在和中,,
,
;
(2),,
,
,
,
,
,
,
,
,
,
则的周长为,
的面积为.
【分析】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.
33.
【解析】
【分析】
知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30°所对的边等于斜边的一半,再求出DE,得到.
【详解】
解: 的垂直平分线交于点F,
(垂直平分线上的点到线段两端点距离相等)
∴
∵,是角平分线
∴
∵
∴,
∴
【分析】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键.
34.(1)收到求救讯息时事故渔船与救助船之间的距离为海里;(2)救助船先到达.
【解析】
【分析】
(1)如图,作于,在△PAC中先求出PC的长,继而在△PBC中求出BP的长即可;
(2)根据“时间=路程÷速度”分别求出救助船A和救助船B所需的时间,进行比较即可.
【详解】
(1)如图,作于,
则,
由题意得:海里,,,
∴海里,是等腰直角三角形,
∴海里,海里,
答:收到求救讯息时事故渔船与救助船之间的距离为海里;
(2)∵海里,海里,救助船分别以40海里/小时、30海里/小时的速度同时出发,
∴救助船所用的时间为(小时),
救助船所用的时间为(小时),
∵,
∴救助船先到达.
【分析】本题考查了解直角三角形的应用,涉及了含30度角的直角三角形的性质,等腰直角三角形的判定,勾股定理的应用等,熟练正确添加辅助线构建直角三角形是解题的关键.
初中数学人教版八年级下册17.1 勾股定理课时作业: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共32页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版八年级下册17.1 勾股定理当堂检测题: 这是一份初中数学人教版八年级下册<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理当堂检测题</a>,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学17.1 勾股定理课时作业: 这是一份初中数学<a href="/sx/tb_c10261_t7/?tag_id=28" target="_blank">17.1 勾股定理课时作业</a>,共50页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。