![2022-2023学年第一学期九年级数学期末数学模拟试题(04)第1页](http://img-preview.51jiaoxi.com/2/3/13792095/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年第一学期九年级数学期末数学模拟试题(04)第2页](http://img-preview.51jiaoxi.com/2/3/13792095/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年第一学期九年级数学期末数学模拟试题(04)第3页](http://img-preview.51jiaoxi.com/2/3/13792095/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022-2023学年第一学期九年级数学期末数学模拟试题(04)
展开
这是一份2022-2023学年第一学期九年级数学期末数学模拟试题(04),共40页。试卷主要包含了下列说法正确的是,如图,为矩形的对角线,已知,等内容,欢迎下载使用。
考生注意:
本试卷26道试题,满分120分,考试时间100分钟.
本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.
答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.
一.选择题(共10小题每题3分,满分30分)
1.如图,一条河两岸互相平行,为测得此河的宽度PT(PT与河岸PQ垂直),测P、Q两点距离为m米,,则河宽PT的长度是( )
A.B.C.D.
2.冰墩墩是2022年北京冬季奥运会的吉祥物,其以国宝熊猫为原型设计创作,将熊猫憨态可掬的形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技的特点,一经开售供不应求.已知该款吉祥物在某电商平台上2月4日的销售量为5000个,2月5日和2月6日的总销售量是22500个.若2月5日和6日较前一天的增长率均为x,则x满足的方程是( )
A.B.
C.D.
3.已知关于的一元二次方程的两根分别记为,,若,则的值为( )
A.7B.C.6D.
4.下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
D.线段垂直平分线上的点到线段两端的距离相等
5.如图,在中,,,,将绕点A逆时针旋转得到,使点落在AB边上,连结,则的值为( )
A.B.C.D.
6.已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是( )
A.B.
C.且D.且
7.如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是( )
A.B.C.D.
8.如图,在中,,,以点为圆心,以的长为半径作弧交于点,连接,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,连接,则下列结论中不正确的是( )
A.B.垂直平分线段
C.D.
9.如图,在正方形ABCD中,AB=4,点O是对角线AC的中点,点Q是线段OA上的动点(点Q不与点O,A重合),连接BQ,并延长交边AD于点E,过点Q作FQ⊥BQ交CD于点F,分别连接BF与EF,BF交对角线AC于点G.过点C作CH∥QF交BE于点H,连接AH.以下四个结论:①BQ=QF;②DEF的周长为8;③;④线段AH的最小值为2﹣2.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
10.如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是( )
A.B.
C.D.
二.填空题(共8小题,每题4分,满分24分)
11.若关于x的一元二次方程有两个不相等的实数根,则m的值可以是____.(写出一个即可)
12.请写出一个图象经过原点的函数的解析式__________.
13.如图,等边三角形ABC内接于⊙O,BC=2,则图中阴影部分的面积是________.
14.如图,半径为 2 的⊙O 与正六边形 ABCDEF 相切于点 C,F,则图中阴影部分的面积为____.
15.对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.
16.如图,AD是△ABC的一条中线,G是△ABC的重心,若,则DG的长为______.
17.如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.
18.在平面直角坐标系中,已知抛物线y=mx-2mx+m-2(m>0).
(1)抛物线的顶点坐标为_________;
(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含 m的式子表示)
三.解答题(共8小题,满分66分)
19.(1)解不等式组: (2)解方程:
20.已知.
(1)化简;
(2)若是方程的解,求的值.
21.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?
22.国家规定“中小学生每天在校体育活动时间不低于”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
组: 组:
组: 组:
请根据上述信息解答下列问题:
(1)本次调查的人数是____________人;
(2)请根据题中的信息补全频数分布直方图;
(3)组对应扇形的圆心角为__________;
(4)本次调查数据的中位数落在__________组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
23.资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为的斜坡上有一建成的基站塔,小芮在坡脚C测得塔顶A的仰角为,然后她沿坡面行走13米到达D处,在D处测得塔顶A的仰角为(点A、B、C、D均在同一平面内)(参考数据:)
(1)求D处的竖直高度;
(2)求基站塔的高.
24.如图,四边形内接于,,延长到点,使得,连接.
(1)求证:;
(2)若,,,求的值.
25.【推理】
如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.
(1)求证:.
【运用】
(2)如图2,在【推理】条件下,延长BF交AD于点H.若,,求线段DE的长.
【拓展】
(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若,,求的值(用含k的代数式表示).
26.如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PFAB交BC于点F.
(1)求抛物线和直线BC的函数表达式,
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
答案与解析
一.选择题(共10小题每题3分,满分30分)
1.如图,一条河两岸互相平行,为测得此河的宽度PT(PT与河岸PQ垂直),测P、Q两点距离为m米,,则河宽PT的长度是( )
A.B.C.D.
【答案】C
【分析】结合图形利用正切函数求解即可.
【详解】解:根据题意可得:
,
∴,
故选C.
【点睛】题目主要考查解直角三角形的实际应用,理解题意,利用正切函数解直角三角形是解题关键.
2.冰墩墩是2022年北京冬季奥运会的吉祥物,其以国宝熊猫为原型设计创作,将熊猫憨态可掬的形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技的特点,一经开售供不应求.已知该款吉祥物在某电商平台上2月4日的销售量为5000个,2月5日和2月6日的总销售量是22500个.若2月5日和6日较前一天的增长率均为x,则x满足的方程是( )
A.B.
C.D.
【答案】D
【分析】根据题意分别表示出2月5日和2月6日的销量,进而相加得出等式即可.
【详解】解:根据题意可得:
2月5日的销量为:5000(1+x),
2月6日的销量为:5000(1+x)(1+x)=5000(1+x)2,
故5000(1+x)+5000(1+x)2=22500.
故选:D.
【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出2月5日和2月6日的销量是解题关键.
3.已知关于的一元二次方程的两根分别记为,,若,则的值为( )
A.7B.C.6D.
【答案】B
【分析】根据根与系数关系求出=3,a=3,再求代数式的值即.
【详解】解:∵一元二次方程的两根分别记为,,
∴+=2,
∵,
∴=3,
∴·=-a=-3,
∴a=3,
∴.
故选B.
【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.
4.下列说法正确的是( )
A.相等的角是对顶角
B.对角线相等的四边形是矩形
C.三角形的外心是它的三条角平分线的交点
D.线段垂直平分线上的点到线段两端的距离相等
【答案】D
【分析】根据对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质逐项判定即可得出结论.
【详解】解:A、根据对顶角的概念可知,相等的角不一定是对顶角,故该选项不符合题意;
B、根据矩形的判定“对角线相等的平行四边形是矩形”可知该选项不符合题意;
C、根据三角形外心的定义,外心是三角形外接圆圆心,是三角形三条边中垂线的交点,故该选项不符合题意;
D、根据线段垂直平分线的性质可知该选项符合题意;
故选:D.
【点睛】本题考查基本几何概念、图形判定及性质,涉及到对顶角的概念、矩形的判定、三角形外心的定义和垂直平分线的性质等知识点,熟练掌握相关几何图形的定义、判定及性质是解决问题的关键.
5.如图,在中,,,,将绕点A逆时针旋转得到,使点落在AB边上,连结,则的值为( )
A.B.C.D.
【答案】C
【分析】由勾股定理求出,并利用旋转性质得出,,,则可求得,再根据勾股定理求出,最后由三角形函数的定义即可求得结果.
【详解】解:在中,,,,
由勾股定理得:.
∵绕点A逆时针旋转得到,
∴,,.
∴.
∴在中,由勾股定理得.
∴.
故选:C.
【点睛】本题考查了求角的三角形函数值,掌握三角形函数的概念并利用勾股定理及旋转的性质求解是解题的关键.
6.已知关于x的一元二次方程标有两个不相等的实数根,则实数k的取值范围是( )
A.B.
C.且D.且
【答案】C
【分析】由一元二次方程定义得出二次项系数k≠0;由方程有两个不相等的实数根,得出“△>0”,解这两个不等式即可得到k的取值范围.
【详解】解:由题可得:,
解得:且;
故选:C.
【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.
7.如图,为矩形的对角线,已知,.点P沿折线以每秒1个单位长度的速度运动(运动到D点停止),过点P作于点E,则的面积y与点P运动的路程x间的函数图象大致是( )
A.B.C.D.
【答案】D
【分析】先根据矩形的性质、勾股定理可得,再分和两种情况,解直角三角形分别求出的长,利用直角三角形的面积公式可得与间的函数关系式,由此即可得出答案.
【详解】解:四边形是矩形,,,
,
,
由题意,分以下两种情况:
(1)当点在上,即时,
在中,,
在中,,,
,
;
(2)如图,当点在上,即时,
四边形是矩形,,
四边形是矩形,
,
,
综上,与间的函数关系式为,
观察四个选项可知,只有选项D的图象符合,
故选:D.
【点睛】本题考查了矩形的判定与性质、解直角三角形、二次函数与一次函数的图象,正确分两种情况讨论是解题关键.
8.如图,在中,,,以点为圆心,以的长为半径作弧交于点,连接,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,连接,则下列结论中不正确的是( )
A.B.垂直平分线段
C.D.
【答案】C
【分析】由题中作图方法易证AP为线段BD的垂直平分线,点E在AP上,所以BE=DE,再根据,,得到是等边三角形,由“三线合一”得AP平分,则,,且角所对的直角边等于斜边的一半,故,所以DE垂直平分线段,证明可得即可得到结论.
【详解】由题意可得:,点P在线段BD的垂直平分线上
,点A在线段BD的垂直平分线上
AP为线段BD的垂直平分线
点E在AP上,BE=DE,故A正确;
,,
且
为等边三角形且
,
平分
,
,
垂直平分,故B正确;
,,
,
,
,故C错误;
,
,
,故D正确
故选C.
【点睛】本题考查30°角的直角三角形的性质、线段垂直平分线的判定和性质,相似三角形的判定和性质,掌握这些基础知识为解题关键.
9.如图,在正方形ABCD中,AB=4,点O是对角线AC的中点,点Q是线段OA上的动点(点Q不与点O,A重合),连接BQ,并延长交边AD于点E,过点Q作FQ⊥BQ交CD于点F,分别连接BF与EF,BF交对角线AC于点G.过点C作CH∥QF交BE于点H,连接AH.以下四个结论:①BQ=QF;②DEF的周长为8;③;④线段AH的最小值为2﹣2.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
【答案】D
【分析】通过证明点B、C、F、Q四点共圆,可得∠QFB=∠QCB=45°,∠QBF=∠QCF=45°,可证BQ=FQ,故①正确;由“SAS”可证△ABN≌△CBF,△BEF≌△BEN,可得EF=EN,由线段的和差关系可得△DEF的周长为8,故②正确;由题意可得点H在以BC为边的圆上运动,则当点H在AP上时,AH有最小值为2−2,故④正确;通过证明△BQG∽△BFE,可得;故③正确,即可求解.
【详解】∵BQ⊥FQ,
∴∠FQB=∠BCD=90°,
∵点B,点C,点F,点Q四点共圆,
∴∠QFB=∠QCB=45°,∠QBF=∠QCF=45°,
∴∠QBF=∠QFB,
∴BQ=FQ,故①正确;
如图1,延长DA至N使AN=CF,连接BN,
∵CF=AN,∠BAN=∠BCF=90°,AB=BC,
∴,
∴BF=BN,∠ABN=∠CBF,
∵∠QBF=45°,
∴∠ABE+∠CBF=45°,
∵∠ABE+∠ABN=45°,
∴∠EBN=∠EBF=45°,
又∵BE=BE,BF=BN,
∴,
∴EF=EN,
∴DEF的周长=DE+DF+EF=DE+DF+EN=DE+DF+AE+CF=AD+CD=8,故②正确;
∵CH∥FQ,
∴∠BHC=∠BQF=90°,
∴点H在以BC为边的圆上运动,
如图2,以BC为直径作圆,取BC的中点P,连接AP,PH,
∴BP=2=HP,
∴AP===2,
在AHP中,AH>AP﹣HP,
∴当点H在AP上时,AH有最小值为2﹣2,故④正确;
如图3,连接EG,
∵∠DAC=∠QBF=45°,
∴点A,点B,点F,点E四点共圆,
∴
∴,∠EGB=90°,
∴EG=BG,
∴BE=BG,
∴∠BEG=∠BFQ=45°,
∵点E,点F,点G,点Q四点共圆,
∴∠BQG=∠BFE,∠BGQ=∠BEF,
∴,
∴=()2=,
∴;故③正确,
故选:D.
图1 图2 图3
【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆等知识,添加恰当辅助线构造全等三角形是解题的关键.
10.如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是( )
A.B.
C.D.
【答案】D
【分析】分四段考虑,①点P在AD上运动,②点P在DC上运动,且点Q还未到端点B,③点P在DC上运动,且点Q到达端点B,④点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.
【详解】解:在Rt△ADE中AD=(cm),
在Rt△CFB中,BC=(cm),
AB=AE+EF+FB=15(cm),
①点P在AD上运动,AP=t,AQ= t,即0,
如图,过点P作PG⊥AB于点G,
,则PG=(0),
此时y=AQPG=(0),图象是一段经过原点且开口向上的抛物线;
②点P在DC上运动,且点Q还未到端点B,即13,
此时y=AQDE=(13),图象是一段线段;
③点P在DC上运动,且点Q到达端点B,即15,
此时y=ABDE=(15),图象是一段平行于x轴的水平线段;
④点P在BC上运动,PB=31-t,即18,
如图,过点P作PH⊥AB于点H,
,则PH=,
此时y=ABPH=(18),图象是一段线段;
综上,只有D选项符合题意,
故选:D.
【点睛】本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,
二.填空题(共8小题,每题4分,满分24分)
11.若关于x的一元二次方程有两个不相等的实数根,则m的值可以是____.(写出一个即可)
【答案】0(答案不唯一)
【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案.
【详解】解:由题意得:此一元二次方程根的判别式,
解得,
则的值可以是0,
故答案为:0(答案不唯一).
【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.
12.请写出一个图象经过原点的函数的解析式__________.
【答案】y=x(答案不唯一)
【分析】直接写出一个已经学过的经过原点的函数解析式即可.
【详解】解:因为直线y=x经过原点(0,0),
故答案为:y=x(本题答案不唯一,只要函数图象经过原点即可).
【点睛】本题考查了学生对函数解析式的理解,解决本题的关键是理解并掌握函数解析式与函数图象的关系等.
13.如图,等边三角形ABC内接于⊙O,BC=2,则图中阴影部分的面积是________.
【答案】##
【分析】根据等边三角形的性质可得S△COB=S△AOC,∠AOC=120°,将阴影部分的面积转化为扇形AOC的面积,利用扇形面积的公式计算可求解.
【详解】解:过点O作OD⊥AC于点D,
∵△ABC为等边三角形,
∴∠AOC=120°,AD=CD=,
∴∠OAC=30°,
∴OA=AD÷cs30°=2,
∵△ABC为等边三角形,
∴S△COB=S△AOC,∠AOC=120°,
∴S阴影=S扇形AOC==,
故答案为:.
【点睛】本题主要考查扇形面积的计算,等边三角形的性质,掌握扇形面积公式是解题的关键.
14.如图,半径为 2 的⊙O 与正六边形 ABCDEF 相切于点 C,F,则图中阴影部分的面积为____.
【答案】
【分析】连接OF,OC,过点O作于点H,交FC于点P,在四边形OCDH中,可求出,在四边形OFEH中,可求出,由题意得OP垂直平分FC,在中,根据直角三角形的性质可得OP=1,根据勾股定理得,则,过点D作,过点E作,根据角之间的关系可得,则,,则,,又因为是正六边形,所以,即可得,根据勾股定理可得,则,用多边形OFEDC的面积减去扇形OFC的面积即可得阴影部分的面积.
【详解】解:连接OF,OC,过点O作于点H,交FC于点P,
在四边形OCDH中,,,,
∴,,
∴,
在四边形OFEH中,,,,
∴,,
∴,
∵OC=OF,
∴OP垂直平分FC,
在中,,,OC=2,
∴,
∴,
,
∴,
过点D作,过点E作,
∴,
∵,,,
∴,
同理可得,,
在中,,
∴,
在中,,
∴,
∴,
∵EF=DE=CD=NM,
∴,
,
∴,
则,
∴,
,
∴阴影部分的面积= ,
故答案为:.
【点睛】本题考查了多边形与圆,扇形的面积,勾股定理,直角三角形的性质,解题的关键是掌握这些知识点和求出正多边形的边长.
15.对于任意实数,抛物线与轴都有公共点.则的取值范围是_______.
【答案】
【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解.
【详解】解:由抛物线与轴都有公共点可得:,即,
∴,
设,则,
要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,
∴,即的最小值为,
∴;
故答案为.
【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键.
16.如图,AD是△ABC的一条中线,G是△ABC的重心,若,则DG的长为______.
【答案】3
【分析】根据重心的性质三角形的重心到一顶点的距离等于到对边中点距离的2倍,直接求得结果.
【详解】解:∵三角形的重心到顶点的距离是其到对边中点的距离的2倍,
∴DG=AG=3.
故答案为:3.
【点睛】掌握三角形的重心的性质:三角形的重心到顶点的距离是其道对边中点的距离的2倍.运用三角形的中位线定理即可证明此结论.
17.如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.
【答案】##2.4
【分析】利用勾股定理得到BC边的长度,根据平行四边形的性质,得知OP最短即为PQ最短,利用垂线段最短得到点P的位置,再证明利用对应线段的比得到的长度,继而得到PQ的长度.
【详解】解:∵,
∴,
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∵PQ最短也就是PO最短,
∴过O作BC的垂线,
∵,
∴,
∴,
∴,
∴,
∴则PQ的最小值为,
故答案为:.
【点睛】考查线段的最小值问题,结合了平行四边形性质和相似三角形求线段长度,本题的关键是利用垂线段最短求解,学生要掌握转换线段的方法才能解出本题.
18.在平面直角坐标系中,已知抛物线y=mx-2mx+m-2(m>0).
(1)抛物线的顶点坐标为_________;
(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含 m的式子表示)
【答案】 (1,-2)
【分析】(1)将二次函数解析式化为顶点式求解;
(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,
结合x2-x1=2,可得x1=0,x2 =2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可 .
【详解】(1)∵,
∴抛物线顶点坐标为(1,-2),
故答案为 (1,-2).
(2)∵抛物线的对称轴为直线x=1,
∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,
结合x2-x1=2,可得x1=0,x2 =2,
∴当2<x2≤3时,y1<y2,
对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,
∴.
【点睛】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.
三.解答题(共8小题,满分66分)
19.(1)解不等式组:
(2)解方程:
【答案】(1);(2),
【分析】(1)根据一元一次不等式组的求法可进行求解;
(2)根据公式法求解一元二次方程即可.
【详解】解:(1)由①得:,
由②得:,
∴不等式组的解集为;
(2)△=42-4×2×(-1)=24>0.
则x=.
即,.
【点睛】本题主要考查一元一次不等式组及一元二次方程的解法,熟练掌握一元一次不等式组及一元二次方程的解法是解题的关键.
20.已知.
(1)化简;
(2)若是方程的解,求的值.
【答案】(1)
(2)
【分析】(1)A括号内两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;
(2)利用因式分解法求出方程的解,代入A中计算即可.
(1)
;
(2)
方程移项得:,
因式分解得:,
解得:x=1或x=-2,
当x=1时,原式无意义;
当x=-2时,原式=.
【点睛】本题考查了分式化简和解一元二次方程,熟练掌握因式分解法解方程是解题的关键.
21.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?
【答案】售价为35元时,才能在一个月内获得最大利润
【分析】设销售单价为x元,月销售利润为y元,根据月销售利润=单件利润×月销量,求得函数关系式,利用二次函数的性质即可解决问题.
【详解】解:设销售单价为x元,销售利润为y元,依题意得,单件利润为元,月销量为件,
月销售利润,
整理得,
配方得,
所以时,y取得最大值4500.
故售价为35元时,才能在一个月内获得最大利润,最大利润为4500元.
【点睛】本题考查了二次函数的实际应用,解题的关键是能够根据题意构建二次函数解决最值问题.
22.国家规定“中小学生每天在校体育活动时间不低于”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
组: 组:
组: 组:
请根据上述信息解答下列问题:
(1)本次调查的人数是____________人;
(2)请根据题中的信息补全频数分布直方图;
(3)组对应扇形的圆心角为__________;
(4)本次调查数据的中位数落在__________组内;
(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.
【答案】(1)400;(2)见解析;(3)36;(4)C;(5)56000人
【分析】(1)由A组人数除以所占的百分比得出总人数,
(2)由总人数减去A、B、D组的人数即可得,
(3)D组人数百分比乘以360即可,
(4)由中位数概念,即可以判断出落在哪一组,
(5)达到国家规定体育活动时间的学生人数为C、D,所以先求出C、D组的人数在求出所占百分比,乘以80000,即可求解.
【详解】(1),
(2)C组人数为400-40-80-40=240,补全统计图如图:
(3),
(4)400个数据,中位数位于第200和201个,所以落在C组内,
(5),
,
,
达到国家规定体育活动时间的学生人数约56000人.
【点睛】本题考查的是频数分布直方图和扇形统计图的综合运用,中位数的应用,正确的运用图表分析信息是解题的关键.
23.资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为的斜坡上有一建成的基站塔,小芮在坡脚C测得塔顶A的仰角为,然后她沿坡面行走13米到达D处,在D处测得塔顶A的仰角为(点A、B、C、D均在同一平面内)(参考数据:)
(1)求D处的竖直高度;
(2)求基站塔的高.
【答案】(1)5米;(2)19.25米
【分析】(1)过点D作DE⊥CM,根据坡度及勾股定理求DE的长度;
(2)延长AB交CM于点F,过点D作DG⊥AF,则四边形DEFG是矩形,然后利用锐角三角函数和坡度的概念解直角三角形
【详解】解:(1)过点D作DE⊥CM
∵斜坡的坡度为
∴设DE=x,则CE=2.4x
在Rt△CDE中,
解得:x=±5(负值舍去)
∴DE=5
即D处的竖直高度为5米;
(2)延长AB交CM于点F,过点D作DG⊥AF,则四边形DEFG是矩形
∴GF=DE=5,CE=2.4DE=12,
由题意可得:∠ACF=45°,∠ADG=53°
设AF=CF=a,则DG=EF=a-12,AG=AF-GF=a-5
∴在Rt△ADG中,,
解得:a=33
经检验:符合题意,
∴DG=33-12=21,
又∵斜坡的坡度为
∴,
解得:BG=8.75
∴AB=AF-GF-BG=19.25
即基站塔的高为19.25米.
【点睛】本题考查解直角三角形、坡度、坡角、仰角、勾股定理、三角函数等知识,熟练掌握这些知识就解决问题的关键,属于中考常考题型.
24.如图,四边形内接于,,延长到点,使得,连接.
(1)求证:;
(2)若,,,求的值.
【答案】(1)见解析;(2)
【分析】(1)由圆内接四边形的性质可知,再由,即可得出.根据圆周角定理结合题意可知,即得出.由此易证,即得出.
(2)过点作,垂足为.根据题意可求出,结合(1)可知,即可求出.根据题意又可求出,利用三角函数即可求出,最后再利用三角函数即可求出最后结果.
【详解】(1)证明:∵四边形是圆的内接四边形,
∴.
∵,
∴.
∵,
∴,
∴.
在和中,
∴,
∴.
(2)解:如图,过点作,垂足为.
∵,,
∴.
由(1)知.
∴.
∴.
∵,,
∴.
∴.
∴.
【点睛】本题为圆的综合题.考查圆内接四边形的性质,圆周角定理,全等三角形的判定和性质,等腰三角形的判定和性质以及解直角三角形.利用数形结合的思想并正确作出辅助线是解答本题的关键.
25.【推理】
如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.
(1)求证:.
【运用】
(2)如图2,在【推理】条件下,延长BF交AD于点H.若,,求线段DE的长.
【拓展】
(3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若,,求的值(用含k的代数式表示).
【答案】(1)见解析;(2);(3)或
【分析】(1)根据ASA证明;
(2)由(1)得,由折叠得,进一步证明,由勾股定理得,代入相关数据求解即可;
(3)如图,连结HE,分点H在D点左边和点在点右边两种情况,利用相似三角形的判定与性质得出DE的长,再由勾股定理得,代入相关数据求解即可.
【详解】(1)如图,由折叠得到,
,
.
又四边形ABCD是正方形,
,
,
,
又 正方形
,
.
(2)如图,连接,
由(1)得,
,
由折叠得,,
.
四边形是正方形,
,
,
又,
,
.
,,
,.
,
,
(舍去).
(3)如图,连结HE,
由已知可设,,可令,
①当点H在D点左边时,如图,
同(2)可得,,
,
由折叠得,
,
又,
,
,
又,
,
,
,
,
,
.
,
,
,
(舍去).
②当点在点右边时,如图,
同理得,,
同理可得,
可得,,
,
,
(舍去).
【点睛】此题主要考查了正方形的性质,矩形的性质,折叠的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
.
26.如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PFAB交BC于点F.
(1)求抛物线和直线BC的函数表达式,
(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.
(3)若点G是抛物线上的一个动点,点M是抛物线对称轴上的一个动点,是否存在以C、B、G、M为顶点的四边形为平行四边形?若存在,求出点G的坐标,若不存在,请说明理由.
【答案】(1)抛物线函数表达式为,直线BC的函数表达式为
(2)点P的坐标为 (,),△PEF的周长为
(3)存在,(2,3)或(-2,-5)或(4,-5)
【分析】(1)由点A,B的坐标,利用待定系数即可求解析式;
(2)利用直线和抛物线的位置关系相切时对应的等腰直角三角形PEF周长最大,二次函数与一次函数联立方程,根的判别式,从而找出对应点P坐标,进而求出周长;
(3)根据平行四边形对角线性质和中点公式,把BC是否为对角线分情况进行分析,设出点G的横坐标,利用中点公式列方程计算即可求解.
(1)
解:将点A(-1,0),B(3,0)代入,得:
,解得 ,
所以抛物线解析式为,C(0,3)
设直线BC的函数表达式 ,将B(3,0),C(0,3)代入得:
,解得 ,
所以直线BC的函数表达式为
(2)
解:如图,设将直线BC平移到与抛物线相切时的解析式为 ,与抛物线联立得:
整理得
,解得 ,
将代入,解得,
将代入得,
即△PEF的周长为最大值时,点P的坐标为 (,)
将代入得,
则此时,
因为△PEF为等腰直角三角形,
则△PEF的周长最大为
(3)
答:存在.
已知B(3,0),C(0,3),设点G(, ),N(1,n),
当BC为平行四边形对角线时,根据中点公式得: ,,则G点坐标为(2,3);
当BC为平行四边形的边时,由题意可知: 或 ,解得 或 则G点坐标为(-2,-5)或(4,-5)
故点G坐标为(2,3)或(-2,-5)或(4,-5)
【点睛】本题考查了待定系数法求二次函数解析式、二次函数图像上点的坐标特征、待定系数法求一次函数解析式、直线与抛物线的位置关系、根的判别式,等腰直角三角形性质,平行四边形的性质,解题的关键(1)根据点的坐标利用待定系数求解析式;(2利用直线和抛物线的位置关系,巧妙利用判别式;(3)熟悉平行四边形对角线性质,结合中点公式分情况展开讨论.
相关试卷
这是一份2022-2023学年第一学期九年级数学期末数学模拟试题(15),共27页。
这是一份2022-2023学年第一学期九年级数学期末数学模拟试题(12),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年第一学期九年级数学期末数学模拟试题(21),共28页。