【期末押题复习】人教版数学八年级上册 期末突破-专题02 全等三角形(单元精练)
展开2022-2023上学期人教版8年级数学上册单元精练与期末考试达标试题突破
专题02全等三角形单元精练
(满分100分,答题时间90分钟)
一、选择题(本大题有5个小题,每小题4分,共20分)
1.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
【答案】D.
【解析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
∵AB=AC,∠A为公共角,
A.如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;
B.如添AD=AE,利用SAS即可证明△ABE≌△ACD;
C.如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
D.如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.
2.已知,如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是( )
A.AC=DF B.AD=BE C.DF=EF D.BC=EF
【答案】C.
【解析】A.∵△ABC≌△DEF,∴AC=DF,故此结论正确;
B.∵△ABC≌△DEF,∴AB=DE;∵DB是公共边,∴AB﹣BD=DE﹣BD,即AD=BE;故此结论正确;
C.∵△ABC≌△DEF,∴AC=DF,故此结论DF=EF错误;
D.∵△ABC≌△DEF,∴BC=EF,故此结论正确。
3.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是( )
A.∠1=∠2 B.AC=CA C.AB=AD D.∠B=∠D
【答案】C.
【解析】∵△ABC≌△CDA,BC=DA
∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,
∴A,B,D是正确的,C、AB=AD是错误的.
4.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A.作∠APB的平分线PC交AB于点C
B.过点P作PC⊥AB于点C且AC=BC
C.取AB中点C,连接PC
D.过点P作PC⊥AB,垂足为C
【答案】B.
【解析】利用判断三角形全等的方法判断即可得出结论.
A.利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
C.利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;
D.利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,
B.过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意。
5. (2022山东泰安)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
A. 40° B. 45° C. 50° D. 60°
【答案】C
【解析】根据外角与内角性质得出∠BAC的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,
设∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,
∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.故选C.
【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.
二、填空题(本大题有5个小题,5个空,每空4分,共20分)
1. (2022湖北孝感)如图,已知,,请你添加一个条件 ,使.
【答案】或或
【解析】先根据平行线性质得到,然后根据全等三角形的判定方法添加条件.
∵,
∴,
∵,
∴当添加时,根据可判断;
当添加时,根据可判断;
当添加时,根据可判断.
故答案为:或或.
【点睛】本题考查了全等三角形的判定和平行线的性质.熟练掌握全等三角形的判定方法(一般三角形全等的判定有:、、、共四种;直角三角形全等的判定有:、、、、共五种)是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.
2. (2022黑龙江龙东地区)如图,在四边形ABCD中,对角线AC,BD相交于点O,,请你添加一个条件 _,使.
【答案】OB=OD(答案不唯一)
【解析】根据SAS添加OB=OD即可
添加OB=OD,
在△AOB和△COD中,
,
∴(SAS)
故答案为OB=OD(答案不唯一)
【点睛】本题考查三角形全等判定添加条件,掌握三角形全等判定方法是解题关键.
3.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= .
【答案】11
【解析】∵这两个三角形全等,两个三角形中都有2
∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5
∴x+y=11.
4.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为 .
【答案】130°.
【解析】∵△ABD≌△CBD,
∴∠C=∠A=80°,
∴∠ADC=360°﹣∠A﹣∠ABC﹣∠C=360°﹣80°﹣70°﹣80°=130°.
5.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是 .
【答案】AC=BC.
【解析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
添加AC=BC,
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠EBC=∠DAC,
在△ADC和△BEC中,
∴△ADC≌△BEC(AAS)
三、解答题(本大题有6个小题,共60分)
1.(8分)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.
【答案】∠C=35°.
【解析】∵△OAD≌△OBC,
∴∠C=∠D,∠OBC=∠OAD,
∵∠0=65°,
∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,
在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,
∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.
2.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.
(1)求∠EBG的度数.
(2)求CE的长.
【答案】(1)∠EBG=138°;(2)CE=3.
【解析】(1)∵△ABE≌△ACD,
∴∠EBA=∠C=42°,
∴∠EBG=180°﹣42°=138°;
(2)∵△ABE≌△ACD,
∴AC=AB=9,AE=AD=6,
∴CE=AC﹣AE=9﹣6=3.
3.(8分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.
【答案】见解析。
【解析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;
证明:∵AD=BC,∴AC=BD,
在△ACE和△BDF中,,
∴△ACE≌△BDF(SSS)
∴∠A=∠B,
∴AE∥BF
4.(10分) (2022湖南衡阳)如图,在中,,、是边上点,且,求证:.
【答案】见解析
【解析】利用等腰三角形的性质可得,再由证明,从而得.
证明:∵,
∴,
在和中,
,
∴,
∴.
【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.
5.(12分)(2022广西百色)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=
(1)求证:△ABC≌△CDA ;
(2)求草坪造型的面积.
【答案】(1)见解析 (2)草坪造型的面积为
【解析】
【分析】(1)根据“SSS”直接证明三角形全等即可;
(2)过点A作AE⊥BC于点E,利用含30°的直角三角形的性质求出的长度,继而求出的面积,再由全等三角形面积相等得出,即可求出草坪造型的面积.
【小问1详解】
在和中,
,
;
【小问2详解】
过点A作AE⊥BC于点E,
,
,
,
,
,
,
,
草坪造型的面积,
所以,草坪造型的面积为.
6.(12分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
【答案】见解析。
【解析】(1)证明:在等腰直角△ABC中,∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴△BDC≌△ADC,
∴∠DCA=∠DCB=45°.
由∠BDE=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,
∴∠BDE=∠EDC,
∴DE平分∠BDC.
(2)证明:连接MC,
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM=15°,
∴△ADC≌△EMC,
∴EM=AD=DB.
【期末押题复习】人教版数学八年级上册 期末突破-专题08 期末达标检测试卷(三): 这是一份【期末押题复习】人教版数学八年级上册 期末突破-专题08 期末达标检测试卷(三),文件包含期末押题复习人教版数学八年级上册期末突破-专题08期末达标检测试卷三解析版docx、期末押题复习人教版数学八年级上册期末突破-专题08期末达标检测试卷三原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
【期末押题复习】人教版数学八年级上册 期末突破-专题07 期末达标检测试卷(二): 这是一份【期末押题复习】人教版数学八年级上册 期末突破-专题07 期末达标检测试卷(二),文件包含期末押题复习人教版数学八年级上册期末突破-专题07期末达标检测试卷二解析版docx、期末押题复习人教版数学八年级上册期末突破-专题07期末达标检测试卷二原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
【期末押题复习】人教版数学八年级上册 期末突破-专题06 期末达标检测试卷(一): 这是一份【期末押题复习】人教版数学八年级上册 期末突破-专题06 期末达标检测试卷(一),文件包含期末押题复习人教版数学八年级上册期末突破-专题06期末达标检测试卷一解析版docx、期末押题复习人教版数学八年级上册期末突破-专题06期末达标检测试卷一原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。