所属成套资源:人教版小学各年级上册数学期末知识归纳+期末考试卷
人教版六年级数学毕业考复习知识归纳+考试卷
展开
小升初数学毕业总复习必考知识点
整数和小数
1.最小的一位数是1,最小的自然数是0
2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……
4.整数和小数都是按照十进制计数法写出的数。
5.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
6.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……
小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……
数的整除
1.因数和倍数:20÷4=5,20是4和5的倍数,4和5是20的因数。
2.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的个数是有限的,最小的因数是1,最大的因数是它本身。
3.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
4.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数。质数都有2个因数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有3个因数。
最小的质数是2,最小的合数是4
1~20以内的质数有:2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
5.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。
6.公约因数、公倍数:几个数公有的因数,叫做这几个数的因数;其中最大的一个,叫做这几个数的最大公因数。 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
7.互质数:公因数只有1的两个数叫做互质数。
四则运算
1.一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差
一个因数=积÷另一个因数 被除数=商×除数 除数=被除数÷商
2.在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。
3.运算定律:
(1)加法交换律:a+b=b+a 两个数相加,交换加数的位置,它们的和不变。
乘法交换律:a×b=b×a 两个数相乘,交换因数的位置,它们的积不变。
(2)加法结合律:(a+b)+c=a+(b+c)
三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再
第一个数相加,它们的和不变。
乘法结合律:(a×b)×c=a×(b×c)
三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
(3)乘法分配律:(a+b)×c=a×c+b×c
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
(4)减法的性质:a-b-c=a-(b+c)
从一个数里连续减去两个数,等于从这个数里减去两个减数的和。
除法的性质:a÷b÷c=a÷(b×c)
一个数连续除以两个数,等于这个数除以两个除数的积。
关系式
速度×时间=路程 路程÷时间=速度 路程÷速度=时间
工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
单价×数量=总价 总价÷数量=单价 总价÷单价=数量
方程
方程:含有未知数的等式叫做方程。
方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
解方程:求方程解的过程叫做解方程。
分数和百分数
1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
2.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
3.分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
4.分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
5.分数的分类:分数可以分为真分数和假分数。
真分数:分子小于分母的分数叫做真分数。真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。
量的计量
1.长度单位有:千米、米、分米、厘米、毫米,写出它们之间的进率
面积单位有:平方千米、公顷、平方米、平方分米、平方厘米,写出它们之间的进率。
体积(容积)单位有:立方米、立方分米(升)、立方厘米(毫升),写出它们之间的进率。
质量单位有:吨、千克、克,写出它们之间的进率。
时间单位有:世纪、年、月、日、时、分、秒,写出它们之间的进率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7个,每月31天。小月有:4、6、9、11月,共4个,每月30天。二月平年是28天,闰年是29天。
3.一年有4个季度,每个季度3个月。
4.闰年:公历年份是4的倍数的一般是闰年,公历年份是整百数的,必须是400的倍数才是闰年。
5.名数:把计量得到的数和单位名称合起来叫做名数。
单名数:只带有一个单位名称的叫做单名数。如4千克
复名数:带有两个或两个以上单位名称的叫做复名数。如4千克250克
6.名数的改写:高级单位的名数化成低级单位的名数乘进率,低级单位的名数化成高级单位的名数除以进率。
几何初步知识
1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边张开的大小,张开的越大,角越大。
计量角的大小的单位:度,用符号“°”表示。
小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。角的两边在一条直线上的角叫做平角。平角180°。
4.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。(画图说明)
5.平行线:在同一平面内不相交的两条直线叫做平行线。也可以说这两条直线互相平行。
6.(画图说明)平行线之间垂直线段的长度都相等。
7.三角形:有三条线段围成的图形叫做三角形。
8.三角形的分类:
(1)按角分:锐角三角形(3个角都是锐角)、钝角三角形(有1个角是钝角)、直角三角形(有1个角是直角)。
(2)按边分:一般三角形、等腰三角形(2条边长度相等)、等边三角形(3条边长度相等)。
9.三角形三个内角和是180°。三角形任意两边之和大于第三边。
10.四边形:由四条线段围成的图形。
11.圆是一种曲线图形。圆上任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
12.圆的半径、直径都有无数条。在同一个圆里,直径是半径的2倍,半径是直径的二分之一。
13.轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
14.学过的图形中的轴对称图形有:圆(无数条)、等腰三角形(1条)、等边三角形(3条)、长方形(2条)、正方形(4条)、等腰梯形(1条)
15.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
16.表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
体积:物体所占空间的大小叫做物体的体积。
17.长方体、正方体都有12条棱,6个面,8个顶点。
正方体是特殊的长方体,等边三角形是特殊的等腰三角形。
18.圆柱的三个特点:(1)上下一样粗细;(2)侧面是曲面;(3)两个底面是相同的圆。
19.圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。圆柱的高有无数条,这些高都平行且相等。
20.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
21.圆周率π是一个无限不循环小数。π=3.141592653……
22.把圆等份成若干份,拼成的图形接近于长方形。这个长方形的长相当于圆周长的一半,宽就是圆的半径。
23.圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
24.等底等高的圆锥的体积是圆柱的,等底等高的圆柱的体积是圆锥的三倍。
比和比例
1.比的意义:两个数相除又叫做两个数的比。
2.求比值:比的前项除以比的后项所得的商叫做比值。
3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
4.应用比的基本性质可以化简比;
5.用字母表示比与除法和分数的关系。 a:b=a÷b=(b≠0)
6.比例尺:我们把图上距离和实际距离的比,叫做这幅图的比例尺。
7.图上距离:实际距离=比例尺 实际距离=图上距离÷比例尺 图上距离=实际距离×比例尺
8.求比值的方法:根据比值的意义,用前项除以后项,结果是一个数。
化简比的方法:根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外),结果是一个最简整数比。
9.正比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
用式子表示x:y=k(一定),用图表示正比例关系是一条直线。
10.反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
用式子表示:x×y=k(一定),用图表示反比例关系是一条曲线。
简单的统计
1.常见的统计图有条形统计图、折线统计图和扇形统计图。
2.条形统计图特点:(1)用一个单位长度表示一定的数量。(2)用直条的长短来表示数量的多少。作用:从图中能清楚地看出各数量的多少,便于相互比较。
折线统计图的特点:(1)用一个单位长度表示一定的数量。(2)用折线的起伏来表示数量的增减变化。作用:从图中能清楚地看出数量的增减变化情况,也能看出数量的多少。
扇形统计图的特点:能清楚地看出各部分与整体之间的关系。
公式的整理
平面图形:
1.长方形:
周长=(长+宽)×2 C长=(a+b)×2
面积=长×宽 S长=a ×b
2.正方形:
周长=边长×4 C正=a×4
面积=边长×边长 S正=a×a
3.平行四边形的面积=底×高 S平=ah
4.三角形的面积=底×高÷2 S三=ah÷2
5.梯形的面积=(上底+下底)×高÷2 S梯=(a+b)×h÷2
6.圆的周长=直径×3.14 C圆=πd
圆的周长=半径×2×3.14 C圆=2πr
圆的面积=半径的平方×圆周率 S圆=πr2
立体图形:
1.长方体
棱长和=(长+宽+高)×4 L长=4(a+b+h)
表面积=(长×宽+长×高+宽×高)×2 S长表=(ab+ah+bh)×2
体积=长×宽×高 V长=abh
2.正方体
棱长和=边长×12 L正=12a
表面积=棱长×棱长×6 S正表=a×a×6
体积=棱长×棱长×棱长 V正=a3
3.圆柱
侧面积=底面周长×高
表面积=侧面积+两个底面积
体积=底面积×高
4.以上立体图形的表面积、体积可以统一成公式为:
表面积=底面周长×高+两个底面积 体积=底面积×高
5.圆锥的体积=圆柱的体积÷3 V锥=sh
鸡兔同笼的问题:
已知总头数和总脚数,求鸡、兔各多少?
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”
解一 (100-2×36)÷(4-2)=14(只)……兔; 36-14=22(只)………………鸡。解二 (4×36-100)÷(4-2)=22(只)……鸡; 36-22=14(只)………………兔。
人教版小学六年级数学毕业考模拟卷
一、判断题:(共5分 每题1分)
1、自然数(0除外)不是质数,就是合数。( )
2、小于五分之四而大于五份之二的分数只有五份之三。( )
3、一个圆柱与一个圆锥等底等高,他们的体积和是36立方米,那么圆锥的
体积是9立方米。( )
4、生产的90个零件中,有10个是废品,合格率是90%。 ( )
5、“一只青蛙四条腿,两只眼睛,一张嘴;两只青蛙八条腿,四只眼睛,两
张嘴,三只青蛙……那么青蛙的只数与腿的条数成正比例关系” ( )
二、 选择题:(5分 每题1分)
1、2008年的1月份、2月份、3月份一共有( )天。
A.89 B.90 C.91 D.92
2、把一个平行四边形任意分割成两个梯形,这两个梯形,这两个梯形中( )
总是相等。
A.高 B.上下两底的和 C.周长 D. 面积
3、一个长方形长5厘米,宽3厘米,表示( )几分之几。
A.长比宽多 B.长比宽少 C.宽比长少 D.宽比长多
4、一个分数的分子缩小3倍,分母扩大3倍,分数值就缩小( )倍。
A.3 B.6 C.9 D.不变
5、下列X和Y 成反比例关系的是( )。
A.Y =3+ X B.X+Y= C.X= Y D.Y=
三、 填空:(共21分 每空1分)
1、70305880读作( ),改写成用“万”作单位的数是( ),省略万位后面的尾数约是( )。
2、2010年第16届广州亚运会的举办时间为2010年11月12日——11月
27日,那么这届亚运会要经历( )个星期还多( )天。
3、把2 ∶1 化成最简整数比是( ),比值是( )。
4、3÷( )=( )÷24= = 75% =( )折。
5、如图中圆柱的底面半径是( ),把这个圆柱
的侧面展开可以得到一个长方形,这个长方形的
面积是( ),这个圆柱体的体积是( )。
(圆周率为π)
10cm
8cm
6、= , = ,
7、1千克盐水含盐50克,盐是盐水的( )%。
8、7 8 能同时被2、3、5整除,个位只能填( ),百位上最大能填( )。
9、一所学校男学生与女学生的比是4 :5,女学生比男学生人数多( )%。
10、一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图
的比例尺是( )。
三、 计算题:(共30分)
1、直接写出得数。(每题1分)
26×50= 25×0.2= 10-0.86= 24×=
÷3= 125%×8= 4.8÷0.8= 8÷=
12×(+)= 1-1÷9= 2.5×3.5×0.4=
2、脱式计算。(每题2分)
0.25× + 2.5% 9.6-11÷7 + ×4
3、解比例和方程。(每题2分)
5.4+2X = 8.6 2.5:5 = x:8 0.2 = 1-
4、列式计算。(每题3分)
(1)180比一个数的50﹪多10,这个数是多少?
(2)0.15除以的商加上5,再乘以,积是多少?
四、 解决问题:(共39分 每题4分)
1、车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?
2、书店有一套科普丛书原价96元,现按6折出售,买一套可以便宜多少元?如果买6套,360元够吗?
3、邮局汇款的汇率是1%,在外打工的小明的爸爸给家里汇钱,一共交了38元的汇费,小明的爸爸一共给家里汇了多少元?
4、汽车厂计划25天组装汽车4000辆,实际提前5天完成,实际平均每天组装汽车多少辆?(用方程解)
5、一个长方体玻璃鱼缸(鱼缸的上面没有玻璃),长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要多少平方分米的玻璃?
6、求下图阴影部分的面积。单位:米 (π取3.14)
25
20
7、一个底面半径是6厘米的圆柱形玻璃器皿里装有一部分水,水中浸没着一个高9厘米的圆锥体铅锤。当铅锤从水中取出后,水面下降了0.5厘米。这个圆锥体的底面积是多少平方厘米?(π取3.14)
8、 下面是某数码照相机厂 2005 —— 2008 年两种型号照相机产量统计表。
单位:万台
型号
年份
2005年
2006年
2007年
2008年
甲种照相机
15
23
30
40
乙种照相机
10
18
25
45
根据表中的数据,完成下面统计图
某数码照相机厂2005——2008年两种型号照相机产量统计图。
甲种相机
单位:万台 ---------乙种相机
2009年1月
50
40
30
20
10
0
2005年 2006年 2007年 2008年
(1) 、完成上面统计图。(2分)
(2) 、那种照相增长的较快?(2分)
(3) 、2008年乙种相机是甲种相机的几分之几?(3分)
(4)、2005年到2008年甲种相机的平均年产量是多少万台?(4分)