终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第12讲 特殊三角形重难点题目训练 (原卷版+解析)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      第12讲 特殊三角形重难点题目训练 (原卷版).docx
    • 解析
      第12讲 特殊三角形重难点题目训练 (解析版).docx
    第12讲 特殊三角形重难点题目训练 (原卷版)第1页
    第12讲 特殊三角形重难点题目训练 (原卷版)第2页
    第12讲 特殊三角形重难点题目训练 (原卷版)第3页
    第12讲 特殊三角形重难点题目训练 (解析版)第1页
    第12讲 特殊三角形重难点题目训练 (解析版)第2页
    第12讲 特殊三角形重难点题目训练 (解析版)第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第12讲 特殊三角形重难点题目训练 (原卷版+解析)

    展开

    这是一份第12讲 特殊三角形重难点题目训练 (原卷版+解析),文件包含第12讲特殊三角形重难点题目训练解析版docx、第12讲特殊三角形重难点题目训练原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
    1.(等腰直角三角形“手拉手”模型)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:
    ①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是( )
    A.①②③④B.②④C.①②③D.①③④
    2.(共斜边的直角三角形+勾股定理)如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为( )
    A.2B.C.8D.9
    3.(直角三角形勾股定理与面积)如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为( )
    A.S1+S2+S3=S4B.S1+S2=S3+S4
    C.S1+S3=S2+S4D.不能确定
    4.(轴对称与勾股定理综合)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是( )
    A.3B.5C.D.6
    5.(勾股定理+中点)如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=5,AD=,则AB的长为( )
    A.10B.4C.D.8
    6.(勾股定理与面积规律)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1﹣S2+S3+S4等于( )
    A.4B.6C.8D.12
    7.(勾股定理与整体思想)如图,在等腰直角△ABC中,∠BAC=90°,AD是△ABC的高线,E是边AC上一点,分别作EF⊥AD于点F,EG⊥BC于点G,几何原本中曾用该图证明了BG2+CG2=2(BD2+DG2),若△ABD与△AEF的面积和为8.5,BG=5,则CG的长为( )
    A.2B.2.5C.3D.3.5
    8.(等边三角形“手拉手”模型)已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N,则下列六个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④AN=BM;⑤BD∥MN.⑥CP平分∠BPD其中,正确的有( )
    A.3个B.4个C.5个D.6个
    9.(三角形与特殊三角形性质的综合)如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.下列结论正确的有( )个.
    ①BF=AC;
    ②CE=BF;
    ③△DGF是等腰三角形;
    ④BD+DF=BC;
    ⑤;
    A.5B.4C.3D.2
    10.(折叠与勾股定理求长度)如图,已知长方形纸片ABCD,点E在边AB上,且BE=2,BC=3,将△CBE沿直线CE翻折,使点B落在点G,延长EG交CD于点F处,则线段FG的长为( )
    A.B.C.D.1
    11.(三角形与特殊三角形性质的综合)如图,在Rt△ABC中,CA=CB,D为斜边AB的中点,Rt∠EDF在△ABC内绕点D转动,分别交边AC,BC点E,F(点E不与点A,C重合),下列说法正确的是( )①∠DEF=45°;②BF2+AE2=EF2;③CD<EF≤CD.
    A.①②B.①③C.②③D.①②③
    二.填空题(共7小题)
    12.(中垂线性质定理与特殊角的应用)在△ABC中,∠A=15°,∠C=30°,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,DE=2,则AC的长为 .
    13.(特殊三角形的判定)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.
    14.(赵爽弦图)如图由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNPQ的面积分别为S1,S2,S3,若S1+S2+S3=60,则S2的值是 .
    15.(直角三角形的分类讨论)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长= .
    16.(将军饮马)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,M、N、P分别是边AB、AC、BC上的动点,连接PM、PN和MN,则PM+PN+MN的最小值是 .
    17.(角平分线与将军饮马)如图,BD是Rt△ABC的角平分线,点F是BD上的动点,已知AC=2,AE=2﹣2,∠ABC=30°,则:
    (1)BE= .
    (2)AF+EF的最小值是 .
    18.(折叠与直角三角形分类讨论)如图,在△ABC中,∠ACB=90°,∠A=30°,BC=2,点D在AB上,连结CD,将△ADC沿CD折叠,点A的对称点为E,CE交AB于点F,△DEF为直角三角形,则CF= .
    三.解答题(共8小题)
    19.(“两定一动”型等腰三角形分类讨论)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.
    (1)当t=2时,CD= ,AD= ;(请直接写出答案)
    (2)当△CBD是直角三角形时,t= ;(请直接写出答案)
    (3)求当t为何值时,△CBD是等腰三角形?并说明理由.
    20.(直角三角形判定与角度转化)如图,△ABC是等腰直角三角形,∠HAC=30°,∠ACD=α,点D是线段AH上的一个动点,连接CD,将线段CD绕C点顺时针旋转90°至点E,连接DE交BC于点F.
    (1)连接BE,求证:△ACD≌△BCE;
    (2)当α=15°时,判断△BEF是什么三角形?并说明理由.
    (3)在点D运动过程中,当△BEF是锐角三角形时,求α的取值范围.
    21.(操作类等腰三角形分类讨论)我们数学八年级上册书本第64页作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形.你能办到吗?请画出示意图说明理由.
    小明在做此题时发现有多种剪法,图1为其中一种方法示意图.
    定义:如果我们用n条线段将一个三角形分成n+1个等腰三角形,我们把这种分法叫做这个三角形的n+1等分线图.
    显然,如图1所示的剪法是这个三角形的3等分线图.
    (1)如图2,△ABC为等腰直角三角形,请你画出一个这个△ABC的4等分线的示意图.
    (2)请你探究:如图3,边长为1的正三角形是否具有4等分线图.若无,请说明理由;若有,请画出所有符合条件的这个正三角形的4等分线图(若两种方法分得的三角形分别成4对全等三角形,则视为一种.)
    22.(特殊三角形与方程思想)如图,在Rt△ABC中,AB=10,BC⊥AC,P为线段AC上一点,点Q,P关于直线BC对称,QD⊥AB于点D,DQ与BC交于点E,连结DP,设AP=m.
    (1)若BC=8,求AC的长,并用含m的代数式表示PQ的长;
    (2)在(1)的条件下,若AP=PD,求CP的长;
    (3)连结PE,若∠A=60°,△PCE与△PDE的面积之比为1:2,求m的值.
    23.(特殊三角形动点问题)如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.
    (1)若AP=AB,则点P到直线AB的距离是 ;
    (2)若点O′恰好落在直线AB上,求△OBP的面积;
    (3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.
    24.(特殊三角形综合题)已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.
    (1)如图1,若△ABC为锐角三角形,且∠ABC=45°.
    求证:①△BDF≌△ADC;
    ②FG+DC=AD;
    (2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.

    相关试卷

    人教版八年级数学下册重难点专题提升精讲精练期末押题重难点检测卷02(提高卷)(原卷版+解析):

    这是一份人教版八年级数学下册重难点专题提升精讲精练期末押题重难点检测卷02(提高卷)(原卷版+解析),共37页。试卷主要包含了8B.5C.3等内容,欢迎下载使用。

    人教版八年级数学下册重难点专题提升精讲精练期末押题重难点检测卷01(原卷版+解析):

    这是一份人教版八年级数学下册重难点专题提升精讲精练期末押题重难点检测卷01(原卷版+解析),共33页。试卷主要包含了21,44,69,96等内容,欢迎下载使用。

    沪教版八年级数学下学期核心考点+重难点讲练与测试重难点05特殊三角形的存在性(原卷版+解析):

    这是一份沪教版八年级数学下学期核心考点+重难点讲练与测试重难点05特殊三角形的存在性(原卷版+解析),共72页。试卷主要包含了已知等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map