搜索
    上传资料 赚现金
    英语朗读宝

    专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

    专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案第1页
    专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案第2页
    专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

    展开

    这是一份专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案,共40页。学案主要包含了微点综述,强化训练,名师点睛等内容,欢迎下载使用。
    专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
    专题23 圆锥曲线中的最值、范围问题
    微点1 圆锥曲线中的最值问题
    【微点综述】
    最值问题是解析几何中常见的问题之一,常以直线和圆锥曲线为背景,以函数、方程不等式等知识作为工具,有较强的综合性,一定要重视方程思想的本质和降低计算量,它是提高解题能力的重要因素.其基本解题方法是把所求量表示成某个变量的函数,利用二次函数或函数单调性求最值或范围,也可以利用基本不等式,有时也会利用几何量的有界性确定范围.
    最值问题不仅解答题中分量较大,而且客观题中也时常出现.
    一、常用方法
    解决圆锥曲线中的最值问题,常见的方法有:
    (1)函数法:一般需要找出所求几何量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
    (2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
    (3)不变量法:在平面几何中有一些不变量的最值结果,在求最值时,可以考虑观察图形的几何特点,判断某个特殊位置满足的最值条件,然后再证明.
    二、思维导图
    求解圆锥曲线最值的思维导图如下:

    最大最小为最值,单调二次不等式,几何有界也有用,具体问题再审视.
    三、典型题型精析
    题型一、与点的坐标、线段有关的最值问题
    与线段有关的最值问题关键是建立关于线段的目标函数,然后运用基本不等式或者函数有关的问题,运用基本不等式或者函数求解.线段的长度可以通过两点间的距离或者利用相交弦长公式进行求解.
    例1.
    1.过抛物线的焦点作直线交抛物线于,两点,为线段的中点,则(    )
    A.以线段为直径的圆与直线相离 B.以线段为直径的圆与轴相切
    C.当时, D.的最小值为4
    例2.
    2.已知抛物线( )的焦点为,过F作直线l交抛物线于M,N两点,则p=_______,的最小值为______.
    例3.
    3.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
    A.16 B.14 C.12 D.10
    例4.
    4.已知椭圆的离心率为,椭圆C与y轴交于A,B两点,且.
    (1)求椭圆C的方程.
    (2)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线分别交于M,N两点.若以MN为直径的圆与x轴交于两点E,F,求点P横坐标的取值范围及的最大值.
    题型二、与角度有关的最值问题
    例5.
    5.在平面直角坐标系中,椭圆:的离心率为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.

    题型三、与向量有关的最值问题
    例6.
    6.如图,已知椭圆C1:+=1(a>b>0)的右焦点为 F,上顶点为 A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3-的直线l与AF平行且与圆C2相切.

    (1) 求椭圆C1的离心率;
    (2) 若椭圆C1的短轴长为 8,求·的最大值.
    题型四、与面积有关的最值问题
    例7.
    7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
    (1)求C的方程,并说明C是什么曲线;
    (2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
    (i)证明:是直角三角形;
    (ii)求面积的最大值.

    例8.
    8.平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
    (i)求证:点M在定直线上;
    (ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.

    例9.
    9.一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽滑动,且,.当栓子在滑槽内作往复运动时,带动绕转动一周(A不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.

    (1)求曲线的方程;
    (2)设动直线与两定直线:和:分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
    例10.
    10.已知圆的切线与椭圆相交于,两点.
    (1)求椭圆的离心率;
    (2)求证:;
    (3)求面积的最大值.
    【强化训练】
    11.斜率为1的直线与椭圆相交于A,B两点,则的最大值为(  )
    A.2 B. C. D.
    12.已知抛物线方程为y2=4x,直线l的方程为x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线的距离为d2,求d1+d2的最小值为___________.
    13.已知椭圆的长轴长为,为坐标原点.
    (1)求椭圆的方程和离心率.
    (2)设点,动点在轴上,动点在椭圆上,且点在轴的右侧.若,求四边形面积的最小值.
    14.平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)设椭圆,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
    (i)求的值;
    (ⅱ)求面积的最大值.
    15.设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
    (1)求轨迹E的方程,并说明该方程所表示曲线的形状;
    (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;
    (3)已知,设直线与圆C:(1

    相关学案

    高考数学一轮复习第8章第10课时圆锥曲线中的范围、最值问题学案:

    这是一份高考数学一轮复习第8章第10课时圆锥曲线中的范围、最值问题学案,共17页。

    专题22 圆锥曲线中的定点、定值、定直线问题 微点1 圆锥曲线中的定点问题试题及答案:

    这是一份专题22 圆锥曲线中的定点、定值、定直线问题 微点1 圆锥曲线中的定点问题试题及答案,共37页。学案主要包含了微点综述,强化训练等内容,欢迎下载使用。

    专题22 圆锥曲线中的定点、定值、定直线问题 微点3 圆锥曲线中的定直线问题试题及答案:

    这是一份专题22 圆锥曲线中的定点、定值、定直线问题 微点3 圆锥曲线中的定直线问题试题及答案,共39页。学案主要包含了微点综述,强化训练等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map