苏科版九年级下册第5章 二次函数5.4 二次函数与一元二次方程教案
展开5.4 二次函数与一元二次方程(1)
教学目标
1.体会函数与方程之间的联系,初步体会利用函数图像研究方程问题的方法;
2.理解二次函数图像与x轴(横轴)交点的个数与一元二次方程的根的个数之间的关系,理解方程有两个不等的实根、两个相等的实根和没有实根的函数图像特征;
3.理解一元二次方程的根就是二次函数与y=h(h是实数)图像交点的横坐标.
教学重点
经历“类比——观察——发现——归纳”而得出二次函数与一元二次方程的关系的探索过程.
教学难点
准确理解二次函数与一元二次方程的关系.
教学过程(教师)
学生活动
设计思路
学前准备
通过观察一次函数的图像,可以发现并归纳一次函数与一元一次方程之间存在联系:
从“数”的方面看,当一次函数的函数值y=0时,相应的自变量的值即为一元一次方程的解;
从“形”的方面看,一次函数与x轴交点的横坐标即为相应一元一次方程的解.
实际上,这也反映了一般函数与方程的关系:一次函数y=kx+b的图像与x轴交点的横坐标即y=0的值就是方程kx+b=0的根.
( 1)如右图,直线y =kx +b(k不为0)经过点(1,0)。根据图像回答:一元一次方程kx +b=0的解 x= ;
(2)一次函数y =x -1的图像与x轴的交点坐标是 ;与y轴的交点坐标是 。
让学生通过对旧知识的回顾及对新知识的思考,梳理旧知识,起到承上启下之效,同时通过老师的引导,培养学生的形成解决一类问题的通用方法的思维品质.
探索活动
探索一 二次函数与一元二次方程有怎样的关系?
1.从关系式看二次函数成为一元二次方程的条件是什么?
2.反应在图像上:观察二次函数的图像,你能确定一元二次方程 的根吗?
积极思考,回答问题.
从“函数值何时为0”着手,沟通二次函数与相应的一元二次方程的关系;通过函数图像揭示相应的一元二次方程的解的几何意义.
用同样的方法探索
二次函数与一元二次方程有怎样的关系?
二次函数与一元二次方程有怎样的关系?
仿照上面解决问题的方法,得出结果.
学生对二次函数与一元二次方程的联系从特殊到一般性结论的讨论,逐步提高学生从旧知识中“类比猜想”“观察发现”“归纳概括”最后得出“结论”的从感性到理性的抽象思维能力.
3.结论
一般地,如果二次函数y=ax2+bx+c的图像与x轴有两个公共点(x1,0)、(x2,0),那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2,反过来也成立.
学生对结论的归纳与提炼.完成一元二次方程ax2+bx+c=0的根的个数与二次函数
y=ax2+bx+c图像与x轴交点的个数的讨论,使学生对数学命题中各部分符号的含义能深刻理解.
得出一般结论,以引导学生作进一步的观察、探索和归纳.
探索二
观察下列图像:
(1)观察二次函数图像与x轴的公共点的个数;
(2)判断函数值为0时一元二次方程根的情况;
(3)你能找到它们之间的联系吗?
师生共同总结.
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
1.当b2-4ac>0时,一元二次方程ax2+bx+c=0有两个不相等的实数根,抛物线y=ax2+bx+c与x轴有两个交点;
2.当b2-4ac=0时,一元二次方程ax2+bx+c=0有两个相等的实数根,抛物线y=ax2+bx+c与x轴只有1个交点;
3.当b2-4ac<0时,一元二次方程ax2+bx+c=0没有实数根,抛物线y=ax2+bx+c与x轴没有交点.
结论由学生自己得出并完善,提高学生分析和解决问题的能力.
例题精讲:
1.已知二次函数y=x2 - 4x + 3。求:(1)抛物线与坐标轴的交点坐标。(2)抛物线与x轴交点之间的距离。(3)设抛物线与坐标轴分别交于A点、B点、C点三点,求三角形ABC的面积。
2.已知二次函数y=x2 - 6x + a, (1)若抛物线与x轴有两个交点,求a的取值范围。
(2)若抛物线的顶点在x轴上,则a= 。
(3)若抛物线与坐标轴有两个公共点,则a= 。
拓展应用:
打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,球的飞行高度y(单位:米)与飞行距离x(单位:百米)之间具有关系:
y=-5x2+20x,想一想:球的飞行高度能否达到40m?
学生独立完成,然后互助交流,进一步理解函数与方程互相转化的思想。
理解一元二次方程的根就是二次函数与y=h(h是实数)的交点的横坐标.
进一步提升学生对于实际问题中的二次函数与一元二次方程的关系的理解应用,用于解决实际问题.求二次函数与一次函数图像交点问题的理解,其本质就是求方程根的问题.
课堂练习
1.方程的根是 ;则函数 的图像与x轴的交点有 个,其坐标是 .
2.方程的根是 ;则函数 的图像与x轴的交点有 个,其坐标是 .
3.下列函数的图像中,与x轴没有公共点的是( )
A. B.
C. D.
4.已知二次函数y=x2-4x+k+2与x轴有公共点,求k的取值范围.
学生独立完先独立完成,然后互助交流,进一步理解函数与方程互相转化的思想.成,小组交流所做结果,巩固对知识的理解.
通过巩固练习加深学生对知识的理解.
课堂小结
1.一元二次方程的两个根即二次函数图像与x轴两个交点的横坐标,因此方程的根的情况决定着有无交点及交点的个数.
2.“给定函数值求自变量问题”转化为“解方程的问题”.
师生共同构建.
用精炼的语言,使得学生记忆简便,而且印象加深,同时让学生在总结中反思,完成升华.
课后作业
课本P28习题5.4第1,2题.
苏科版九年级下册7.1 正切教学设计: 这是一份苏科版九年级下册7.1 正切教学设计,共5页。教案主要包含了问题情境,建构活动,数学化认识,基础性练习,拓展与延伸,课堂总结等内容,欢迎下载使用。
苏科版九年级下册7.1 正切教学设计: 这是一份苏科版九年级下册7.1 正切教学设计,共10页。教案主要包含了教学内容解析,教学目标设置,学生学情分析,教学策略分析,教与学互动设计等内容,欢迎下载使用。
初中数学苏科版九年级下册7.1 正切教案: 这是一份初中数学苏科版九年级下册7.1 正切教案,共4页。教案主要包含了设疑自探等内容,欢迎下载使用。