


山东省烟台市2022-2023学年八年级上学期期末数学试题 (含答案)
展开
这是一份山东省烟台市2022-2023学年八年级上学期期末数学试题 (含答案),共11页。试卷主要包含了保证答题卡清洁、完整等内容,欢迎下载使用。
2022—2023学年第一学期期末阶段性测试初三数学试题(120分钟)注意事项:1.答题前,请务必将自己的学校、姓名、准考证号填写在答题卡和试卷规定的位置上。2.答选择题时,必须使用2B铅笔填涂答题卡上相应题目的正确答案字母代号,如需改动,用橡皮擦干净后,再选涂其他答案。3.答非选择题时,必须使用0.5毫米黑色签字笔书写;做图、添加辅助线时,必须用2B铅笔。4.保证答题卡清洁、完整。严禁折叠、严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。5.请在题号所指示的答题区域内作答,写在试卷上或答题卡指定区域外的答案无效。一、书写与卷面(3分)书写规范 卷面整洁二、选择题(本题共10个小题,每小题3分,满分30分)每小题有且只有一个正确答案,请把正确答案的字母代号涂在答题卡上。1.下列分式中,是最简分式的是( )A. B. C. D.2.七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是中心对称图形的是( )A. B. C. D.3.在中,若,则的度数是( )A.140° B.120° C.100° D.40°4.如图,菱形的对角线AC与BD相交于点O,若,,则BD的长为( )A.4 B.6 C.7 D.85.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,某校调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的中位数为( )A.6h B.7h C.7.5h D.8h6.如图,将三角形纸片剪掉一角得四边形,设与四边形的外角和的度数分别为,,则正确的是( )A. B. C. D.无法比较与的大小7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )A.5分 B.4分 C.3分 D.45%8.当m为自然数时,一定能被下列哪个数整除( )A.5 B.6 C.7 D.89.如图,四边形是正方形,E为边CD上一点,绕着点A顺时针旋转90°后到达的位置,连接EF,则的形状是( )A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形10.如图,等腰直角三角形中,,,将BC绕点B顺时针旋转(),得到BP,连接CP,过点A作交CP的延长线于点H,连接AP,则的度数( )A.随着的增大而增大 B.随着的增大而减小C.保持定值45°不变 D.随着的增大,先增大后减小三、填空题(本大题共6个小题,每小题3分,满分18分)11.如果关于x的方程有增根,那么m的值为________.12.若关于x的二次三项式是完全平方式,则k的值是________.13.已知一组数据,,的平均数和方差分别为5和2,则数据,,的平均数和标准差分别是________.14.如图,在中,,,的平分线AE交BC于E点,则EC的长为________.15.如图,将长为5 cm,宽为3 cm的矩形先向右平移2 cm,再向下平移1 cm,得到矩形,则阴影部分的面积为________.16.如图,在平面直角坐标系中,三个顶点坐标分别为,,,则顶点B的坐标为________.四、解答题(本大题共9个小题,满分69分)17.(本题满分6分)分解因式:(1).(2)18.(本题满分5分)解方程:19.(本题满分6分)先化简,然后从的范围内选择一个合适的整数作为x的值代入求值.20.(本题满分6分)如图,已知的三个顶点的坐标分别为、、.(1)画出关于原点O成中心对称的图形;(2)将绕原点O顺时针旋转90°,画出对应的,并写出点的坐标.21.(本题满分8分)核酸检测时采集的样本必须在4小时内送达检测中心,超过时间,样本就会失效.A、B两个采样点到检测中心的路程分别为30 km、36 km.A、B两个采样点的送检车有如下信息:信息一:B采样点送检车的平均速度是A采样点送检车的1.2倍;信息二:A、B两个采样点送检车行驶的时间之和为2小时.若B采样点从开始采集样本到送检车出发用了2.6小时,则B采样点采集的样本会不会失效?22.(本题满分8分)在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图.请解答下列问题:(1)求各班参赛人数,并补全条形统计图;(2)此次竞赛中8(2)班成绩的中位数a为________分;(3)小明同学根据以上信息制作了如下统计表: 平均数(分)中位数(分)方差8(1)班m90n8(2)班91a29请分别求出m和n的值,并从稳定性方面比较两个班的成绩.23.(本题满分8分)如图,在矩形中,对角线AC,BD相交于点O,,交BC于F,垂足为E,求的度数.24.(本题满分10分)如图,在中,,M、N分别是AD、BC的中点.(1)求证:四边形是平行四边形;(2)若,,求BD的长.25.(本题满分12分)如图①,中,,点M、N分别是AB、AC上的点,且.连接MN、CM、BN,点D、E、F、G分别是BC、MN、BN、CM的中点,连接E、F、D、G.(1)判断四边形的形状是_________(不必证明);(2)现将绕点A旋转一定的角度,其他条件不变(如图②),四边形的形状是否发生变化?证明你的结论;(3)如图②,在(2)的情况下,请将在原有的条件下添加一个条件,使四边形是正方形.请写出你添加的条件,并在添加条件的基础上证明四边形是正方形. 2022-2023学年第一学期期末阶段性测试初三数学参考答案及评分意见一、书写与卷面(3分)评分标准:分别赋分3,2,1,0.二、选择题(每小题3分,共30分)题号12345678910答案BDADCABDCC三、填空题(每小题3分,共18分)11., 12., 13.6,, 14.2, 15.18, 16..四、解答题(17题每小题3分,18题5分,19-20题每小题6分,21-23题每小题8分,24题10分,25题12分,共69分)17.解:(1)原式.································································3分(2)原式.·······································································3分18.解:原方程可变为方程两边同乘以,得,解得,··························································4分检验:当时,,所以原分式方程的解为.·····························································5分19.解:原式.···············································································5分由分式有意义的条件可知,,∴当时,∴原式.(答案不唯一,如0,3)······················································6分20.解:(1)如图所示,即为所求;····················································3分(2)如图所示,即为所求,···························································5分其中点.··········································································6分21.解:设A采样点送检车的平均速度是,················································1分根据题意,得,····································································4分解得,···········································································5分经检验,是分式方程的根,····························································6分∴B采样点送检车的平均速度为,∴B采样点送检车的行驶时间为,∵,∴B采样点采集的样本不会失效.·······················································8分22.解:(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,∴8(2)班参赛的人数为(人)························································1分∵8(1)和8(2)班参赛人数相同,∴8(1)班参赛人数也是10人,························································2分故8(1)班C等级人数为(人),补全图形如图:····································································3分(2)90;·········································································4分(3)(分),·····································································5分,···············································································7分∵8(1)班的方差大于8(2)班的方差,∴从稳定性看8(2)班的成绩更稳定.···················································8分23.解:∵四边形是矩形,∴.∵,∴.·············································································3分∵,∴.∴.·············································································5分∵,,,∴,∴,∴.·············································································8分24.(1)证明:∵是平行四边形,∴,.···········································································1分∵M、N分别是AD、BC的中点,∴.∵,∴四边形是平行四边形;·····························································3分(2)如图,连接ND,·······························································4分∵是平行四边形,∴.∵N是BC的中点,∴.∵,∴.·············································································6分∵,∴是等边三角形,∴,,···········································································7分∵是的外角,∴,∵,∴,∴,·············································································9分∴,∴.············································································10分25.解:(1)菱形;································································2分(2)不变,·······································································3分证明:由旋转得,∴,∵,,∴(),∴.·············································································5分∵点E、F分别是MN、BN的中点,∴,,同理,,,,∴,,∴四边形是平行四边形.·····························································6分且.∴四边形是菱形;···································································7分(3)添加条件:,··································································8分证明:如图,设BM与CN交于点P,DF与BM交于点Q,由(2)得,∵,∴,∴,即,∴.············································································10分∵,∴.············································································11分∵,∴,············································································12分∴菱形是正方形.
相关试卷
这是一份山东省烟台市海阳市2022-2023学年八年级上学期期末数学试题,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份山东省烟台市牟平区2022-2023学年八年级上学期期末数学试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省烟台市蓬莱区2022-2023学年八年级上学期期末数学试题(含答案),共10页。
