沪科版七年级下册8.4 因式分解当堂检测题
展开
这是一份沪科版七年级下册8.4 因式分解当堂检测题,共18页。试卷主要包含了分解因式,因式分解,把下列各式因式分解,把下列多项式分解因式等内容,欢迎下载使用。
因式分解计算专练
一.解答题(共30小题)
1.分解因式:
(1)a2b﹣2ab+b; (2)(2m+3)2﹣m2.
2.因式分解:2(a﹣b)2+4(b﹣a).
3.因式分解:
(1)2a2﹣50; (2)x2y﹣2xy+xy2.
4.因式分解:
(1)﹣2a3+12a2﹣18a; (2)a2(x﹣y)+4(y﹣x).
5.把下列各式因式分解:
(1)a2(x﹣y)+9b2(y﹣x); (2)(a2+9)2﹣36a2.
6.把下列多项式分解因式:
(1)a3﹣ab2; (2)2x3﹣4x2+2x.
7.分解因式:
(1)a3﹣9a; (2)n2(m﹣2)+(2﹣m);
(3)x2﹣y2﹣2y﹣1; (4)2x2+5xy+2y2+2x+y.
8.因式分解
(1)18(a﹣b)2﹣12(b﹣a); (2)xy3﹣2x2y2+x3y.
9.分解因式:
(1)x2﹣16; (2)2x2y﹣8xy+8y.
10.因式分解:
(1)2a3﹣4a2b+2ab2; (2)(x﹣1)(x﹣3)+1.
11.因式分解:
(1)3x(a﹣b)﹣y(a﹣b); (2)2x3﹣8x;
(3)(x2+16y2)2﹣64x2y2.
12.因式分解:
(1)m2(m﹣1)﹣4(1﹣m)2; (2)﹣9(m﹣n)2+4m2;
(3)9x2﹣6x(x+2y)+(x+2y)2; (4)(m﹣1)(m﹣3)+1.
13.因式分解:
(1)m2﹣6mn+9n2; (2)4x2﹣16y2;
(3)(a﹣b)(x﹣y)﹣(b﹣a)(x+y); (4)(x2+1)2﹣4x2.
14.分解因式:﹣2ax2+4axy﹣2ay2. 15.分解因式:(a+b)4﹣2(a+b)2+1.
16.把下列多项式分解因式.
(1)x3﹣25x; (2)(x﹣1)(x﹣3)+1.
17.分解因式:2x3﹣4x2y+2xy2.
18.分解因式:
(1)x(x﹣1)﹣3x+4; (2)﹣2a3+12a2﹣18a.
19.因式分解:
(1)8a3b2+12ab3c; (2)3x2y﹣3y.
20.因式分解:
(1)3x2﹣12; (2)xy2﹣8xy+16x.
21.因式分解:
(1)﹣2a+32ab2; (2)x(y2+9)﹣6xy;
(3)16x2﹣8xy+y2; (4)x+12﹣x2.
22.分解因式:2x2y+4xy2+2y3.
23.因式分解:
(1)8m2n﹣2mn; (2)9x2﹣y2;
(3)x3y﹣4x2y2+4xy3; (4)n4﹣16.
24.分解因式:
(1)4a2﹣16; (2)(x+1)(x﹣3)+4;
(3)(a﹣b)(3x﹣y)+(b﹣a)(x+y).
25.分解因式:﹣6x2y﹣3x3﹣3xy2.
26.因式分解
(1)x3+5x2+6x (2)ax2﹣ay2
(3)6(m﹣n)2+3(n﹣m) (4)a(a﹣1)﹣a+1
27.因式分解:(1)16x4﹣1. (2)(m﹣n)(x+3y)﹣(n﹣m)(x﹣y).
28.分解因式:x2m+6xm+9m.
29.分解因式:
(1)3x2y﹣3y (2)n2(m﹣2)+(2﹣m)
30.因式分解:
(1)a2b﹣10ab+25b; (2)4a2(a﹣b)+(b﹣a).
因式分解计算专练
参考答案与试题解析
一.解答题(共30小题)
1.分解因式:
(1)a2b﹣2ab+b;
(2)(2m+3)2﹣m2.
【解答】解:(1)a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2;
(2)(2m+3)2﹣m2
=(2m+3+m)(2m+3﹣m)
=3(m+1)(m+3).
2.因式分解:2(a﹣b)2+4(b﹣a).
【解答】解:2(a﹣b)2+4(b﹣a)
=2(a﹣b)2﹣4(a﹣b)
=2(a﹣b)(a﹣b﹣2).
3.因式分解:
(1)2a2﹣50;
(2)x2y﹣2xy+xy2.
【解答】解:(1)原式=2(a2﹣25)
=2(a+5)(a﹣5);
(2)原式=xy(x﹣2+y).
4.因式分解:
(1)﹣2a3+12a2﹣18a;
(2)a2(x﹣y)+4(y﹣x).
【解答】解:(1)原式=﹣2a(a2﹣6a+9)
=﹣2a(a﹣3)2;
(2)原式=a2(x﹣y)﹣4(x﹣y)
=(x﹣y)(a2﹣4)
=(x﹣y)(a+2)(a﹣2).
5.把下列各式因式分解:
(1)a2(x﹣y)+9b2(y﹣x);
(2)(a2+9)2﹣36a2.
【解答】解:(1)原式=a2(x﹣y)﹣9b2(x﹣y)
=(x﹣y)(a2﹣9b2)
=(x﹣y)(a+3b)(a﹣3b);
(2)原式=(a2+9+6a)(a2+9﹣6a)
=(a+3)2(a﹣3)2.
6.把下列多项式分解因式:
(1)a3﹣ab2;
(2)2x3﹣4x2+2x.
【解答】解:(1)原式=a(a2﹣b2)
=a(a+b)(a﹣b);
(2)原式=2x(x2﹣2x+1)
=2x(x﹣1)2.
7.分解因式:
(1)a3﹣9a;
(2)n2(m﹣2)+(2﹣m);
(3)x2﹣y2﹣2y﹣1;
(4)2x2+5xy+2y2+2x+y.
【解答】解:(1)a3﹣9a
=a(a2﹣9)
=a(a+3)(a﹣3);
(2)n2(m﹣2)+(2﹣m)
=(m﹣2)(n2﹣1)
=(m﹣2)(n+1)(n﹣1);
(3)x2﹣y2﹣2y﹣1
=x2﹣(y2+2y+1)
=x2﹣(y+1)2
=(x+y+1)(x﹣y﹣1);
(4)2x2+5xy+2y2+2x+y
=(2x2+5xy+2y2)+(2x+y)
=(2x+y)(x+2y)+(2x+y)
=(2x+y)(x+2y+1).
8.因式分解
(1)18(a﹣b)2﹣12(b﹣a);
(2)xy3﹣2x2y2+x3y.
【解答】解:(1)原式=18(a﹣b)2+12(a﹣b)
=6(a﹣b)[3(a﹣b)+2]
=6(a﹣b)(3a﹣3b+2);
(2)原式=xy(y2﹣2xy+x2)
=xy(x﹣y)2.
9.分解因式:
(1)x2﹣16;
(2)2x2y﹣8xy+8y.
【解答】解:(1)原式=(x+4)(x﹣4);
(2)原式=2y(x2﹣4x+4)
=2y(x﹣2)2.
10.因式分解:
(1)2a3﹣4a2b+2ab2;
(2)(x﹣1)(x﹣3)+1.
【解答】解:(1)2a3﹣4a2b+2ab2
=2a(a2﹣2ab+b2)
=2a(a﹣b)2;
(2)(x﹣1)(x﹣3)+1
=x2﹣3x﹣x+3+1
=x2﹣4x+4
=(x﹣2)2.
11.因式分解:
(1)3x(a﹣b)﹣y(a﹣b);
(2)2x3﹣8x;
(3)(x2+16y2)2﹣64x2y2.
【解答】解:(1)3x(a﹣b)﹣y(a﹣b)
=(a﹣b)(3x﹣y);
(2)2x3﹣8x
=2x(x2﹣4)
=2x(x+2)(x﹣2);
(3)(x2+16y2)2﹣64x2y2.
=(x2+16y2+8xy)(x2+16y2﹣8xy)
=(x+4y)2(x﹣4y)2.
12.因式分解:
(1)m2(m﹣1)﹣4(1﹣m)2;
(2)﹣9(m﹣n)2+4m2;
(3)9x2﹣6x(x+2y)+(x+2y)2;
(4)(m﹣1)(m﹣3)+1.
【解答】解:(1)m2(m﹣1)﹣4(1﹣m)2
=m2(m﹣1)﹣4(m﹣1)2
=(m﹣1)[m2﹣4(m﹣1)]
=(m﹣1)(m2﹣4m+4)
=(m﹣1)(m﹣2)2;
(2)﹣9(m﹣n)2+4m2
=4m2﹣9(m﹣n)2
=(2m)2﹣[3(m﹣n)]2
=(2m+3m﹣3n)(2m﹣3m+3n)
=(5m﹣3n)(3n﹣m);
(3)9x2﹣6x(x+2y)+(x+2y)2
=[3x﹣(x+2y)]2
=(2x﹣2y)2
=4(x﹣y)2;
(4)(m﹣1)(m﹣3)+1
=m2﹣3m﹣m+3+1
=m2﹣4m+4
=(m﹣2)2.
13.因式分解:
(1)m2﹣6mn+9n2;
(2)4x2﹣16y2;
(3)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);
(4)(x2+1)2﹣4x2.
【解答】解:(1)m2﹣6mn+9n2;
=(m﹣3n)2;
(2)4x2﹣16y2;
=4(x2﹣4y2)
=4(x+2y)(x﹣2y);
(3)(a﹣b)(x﹣y)﹣(b﹣a)(x+y);
=(a﹣b)(x﹣y)+(a﹣b)(x+y)
=(a﹣b)(x﹣y+x+y)
=2x(a﹣b);
(4)(x2+1)2﹣4x2.
=(x2+1﹣2x)(x2+1+2x)
=(x﹣1)2(x+1)2.
14.分解因式:﹣2ax2+4axy﹣2ay2.
【解答】解:﹣2ax2+4axy﹣2ay2
=﹣2a(x2﹣2xy+y2)
=﹣2a(x﹣y)2.
15.分解因式:(a+b)4﹣2(a+b)2+1.
【解答】解:令(a+b)2=t,
原式为:t2﹣2t+1=(t﹣1)2,
∴原式=[(a+b)2﹣1]2
=[(a+b+1)(a+b﹣1)]2
=(a+b+1)2(a+b﹣1)2.
16.把下列多项式分解因式.
(1)x3﹣25x;
(2)(x﹣1)(x﹣3)+1.
【解答】解:(1)x3﹣25x
=x(x2﹣25)
=x(x﹣5)(x+5);
(2)(x﹣1)(x﹣3)+1
=x2﹣3x﹣x+3+1
=x2﹣4x+4
=(x﹣2)2.
17.分解因式:2x3﹣4x2y+2xy2.
【解答】解:2x3﹣4x2y+2xy2
=2x(x2﹣2xy+y2)
=2x(x﹣y)2.
18.分解因式:
(1)x(x﹣1)﹣3x+4;
(2)﹣2a3+12a2﹣18a.
【解答】解:(1)x(x﹣1)﹣3x+4
=x2﹣x﹣3x+4
=x2﹣4x+4
=(x﹣2)2;
(2)﹣2a3+12a2﹣18a
=﹣2a(a2﹣6a+9)
=﹣2a(a﹣3)2.
19.因式分解:
(1)8a3b2+12ab3c;
(2)3x2y﹣3y.
【解答】解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);
(2)3x2y﹣3y
=3y(x2﹣1)
=3y(x+1)(x﹣1).
20.因式分解:
(1)3x2﹣12;
(2)xy2﹣8xy+16x.
【解答】解:(1)3x2﹣12
=3(x2﹣4)
=3(x+2)(x﹣2);
(2)xy2﹣8xy+16x
=x(y2﹣8y+16)
=x(y﹣4)2.
21.因式分解:
(1)﹣2a+32ab2;
(2)x(y2+9)﹣6xy;
(3)16x2﹣8xy+y2;
(4)x+12﹣x2.
【解答】解:(1)﹣2a+32ab2
=﹣2a(1﹣16b2)
=﹣2a(1+4b)(1﹣4b);
(2)x(y2+9)﹣6xy
=x(y2+9﹣6y)
=x(y﹣3)2;
(3)16x2﹣8xy+y2=(4x﹣y)2;
(4)x+12﹣x2
=﹣(x2﹣x﹣12)
=﹣(x﹣4)(x+3).
22.分解因式:2x2y+4xy2+2y3.
【解答】解:原式=2y(x2+2xy+y2)
=2y(x+y)2.
23.因式分解:
(1)8m2n﹣2mn;
(2)9x2﹣y2;
(3)x3y﹣4x2y2+4xy3;
(4)n4﹣16.
【解答】解:(1)原式=2mn(4m﹣1);
(2)原式=(3x+y)(3x﹣y);
(3)原式=xy(x2﹣4xy+4y2)
=xy(x﹣2y)2;
(4)原式=(n2+4)(n2﹣4)
=(n2+4)(n+2)(n﹣2).
24.分解因式:
(1)4a2﹣16;
(2)(x+1)(x﹣3)+4;
(3)(a﹣b)(3x﹣y)+(b﹣a)(x+y).
【解答】解:(1)原式=4(a2﹣4)
=(a+2)(a﹣2);
(2)原式=x2﹣2x﹣3+4
=x2﹣2x+1
=(x﹣1)2;
(3)原式=(a﹣b)(3x﹣y)﹣(a﹣b)(x+y)
=(a﹣b)(3x﹣y﹣x﹣y)
=(a﹣b)(2x﹣2y)
=2(a﹣b)(x﹣y).
25.分解因式:﹣6x2y﹣3x3﹣3xy2.
【解答】解:﹣6x2y﹣3x3﹣3xy2
=﹣3x(x2+2xy+y2)
=﹣3x(x+y)2.
26.因式分解
(1)x3+5x2+6x
(2)ax2﹣ay2
(3)6(m﹣n)2+3(n﹣m)
(4)a(a﹣1)﹣a+1
【解答】解:(1)x3+5x2+6x
=x(x2+5x+6)
=x(x+2)(x+3);
(2)ax2﹣ay2
=a(x2﹣y2)
=a(x+y)(x﹣y);
(3)6(m﹣n)2+3(n﹣m)
=3(m﹣n)(2m﹣2n﹣1);
(4)a(a﹣1)﹣a+1
=a2﹣a﹣a+1
=a2﹣2a+1
=(a﹣1)2.
27.因式分解:(1)16x4﹣1.
(2)(m﹣n)(x+3y)﹣(n﹣m)(x﹣y).
【解答】解:(1)16x4﹣1
=(4x2+1)(4x2﹣1)
=(4x+1)(2x+1)(2x﹣1);
(2)(m﹣n)(x+3y)﹣(n﹣m)(x﹣y)
=(m﹣n)(x+3y)+(m﹣n)(x﹣y)
=(m﹣n)(x+3y+x﹣y)
=(m﹣n)(2x+2y)
=2(m﹣n)(x+y).
28.分解因式:x2m+6xm+9m.
【解答】原式=m(x2+6x+9)
=m(x+3)2.
29.分解因式:
(1)3x2y﹣3y
(2)n2(m﹣2)+(2﹣m)
【解答】解:(1)6x2y﹣3y
=3y(x2﹣1)
=3y(x+1)(x﹣1);
(2)n2(m﹣2)+(2﹣m)
=n2(m﹣2)﹣(m﹣2)
=(m﹣2)(n2﹣1)
=(m﹣2)(n+1)(n﹣1).
30.因式分解:
(1)a2b﹣10ab+25b;
(2)4a2(a﹣b)+(b﹣a).
【解答】解:(1)a2b﹣10ab+25b
=b(a2﹣10a+25)
=b(a﹣5)2;
(2)4a2(a﹣b)+(b﹣a)
=(a﹣b)(4a2﹣1)
=(a﹣b)(2a+1)(2a﹣1).
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/12/22 16:26:05;用户:初数;邮箱:18110913212;学号:30691614
相关试卷
这是一份中考数学三轮冲刺专练07(计算题)(教师版),共20页。试卷主要包含了计算, 计算等内容,欢迎下载使用。
这是一份2023年中考数学专练:03 代数式、整式与因式分解,共4页。试卷主要包含了下列各式不是单项式的为, 下列整式与ab2为同类项的是, 计算, 下列因式分解正确的是, 因式分解等内容,欢迎下载使用。
这是一份2023年广西中考数学复习专项专练专题02 整式与因式分解(含答案)