所属成套资源:七年级数学下册阶段性复习精选精练 北师大版
期末复习与测试(1)-【挑战满分】七年级数学下册阶段性复习精选精练(北师大版)
展开
这是一份期末复习与测试(1)-【挑战满分】七年级数学下册阶段性复习精选精练(北师大版),共17页。试卷主要包含了下列计算正确的是,下列事件中属于必然事件的是等内容,欢迎下载使用。
期末复习与测试(1)
一、 选择题(本大题共12小题,每小题3分,共36分)
1.2022年2月4日至20日,第24届冬奥会在北京和张家口举办,北京是唯一同时举办过夏季和冬季奥运会的城市.下列4个图形是四届冬奥会的部分图标,属于轴对称图形的是( )
A. B. C. D.
2.如图,在下列条件中,能判断AD∥BC的是( )
A.∠DAC=∠BCA B.∠DCB+∠ABC=180°
C.∠ABD=∠BDC D.∠BAC=∠ACD
3.下列计算正确的是( )
A. B.2a-a=1 C. D.
4.下列事件中属于必然事件的是( )
A.任意画一个三角形,其内角和是180°
B.打开电视机,正在播放新闻联播
C.随机买一张电影票,座位号是奇数号
D.掷一枚质地均匀的硬币,正面朝上
5.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是( )
A.6 B.10 C.18 D.20
6.等腰三角形的一个角是80°,则它的顶角的度数是( )
A.80° B.80°或20° C.80°或50° D.20°
7.如图,在和中, ,添加一个条件,不能证明和全等的是( )
A. B.
C. D.
8.如图,用尺规作出∠OBF=∠AOB,所画痕迹是( )
A.以点B为圆心,OD为半径的弧
B.以点C为圆心,DC为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DC为半径的弧
9.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4
10.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为( )
A. B.
C. D.
11.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8 B.6 C.4 D.2
12.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①BCD≌CBE;②BAD≌BCD;③BDA≌CEA;④BOE≌COD;⑤ACE≌BCE;上述结论一定正确的是
A.①②③ B.②③④ C.①③⑤ D.①③④
二、填空题(本大题共6小题,每小题4分,共24分)
13.化简:6a6÷3a3=____.
14.某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为_____.
15.如图,一块直角三角板的两个顶点分别在直尺的对边上.若∠1=30°,那么∠2=_______度.
16.三角形三边长分别为3,,则a的取值范围是______.
17.如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△ABD≌△CEB.
18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是_____.
三、解答题(本大题共6小题,共60分)
19.(10分)计算:
(1); (2).
20.(8分)化简求值:[(x+2y)2-(x+y)(3x-y)-5y2]÷(2x),其中x=-2,y=.
21.(10分)如图,长方形ABCD中,AB=4,BC=8.点P在AB上运动,设PB=x,图中阴影部分的面积为y.
(1)写出阴影部分的面积y与x之间的函数解析式和自变量x的取值范围;
(2)点P在什么位置时,阴影部分的面积等于20?
22.(10分)如图所示,在正方形网格中,每个小正方形的边长为1个单位.
(1)过直线m作四边形的对称图形;
(2)求四边形的面积.
23.(10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,CE交BA于点D,CE交BF于点M.
求证:(1)EC=BF; (2)EC⊥BF.
24.(12分)在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.
(1)如果点D在线段BC上运动,如图1:
①依题意补全图1;
②求证:∠BAD=∠EDC;
③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.
小明与同学讨论后,形成了证明这个结论的几种想法:
想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.
想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.
请你参考上面的想法,证明∠DCE=135°
(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.
参考答案
1.B
【分析】
根据轴对称图形的定义进行判断即可.
解:在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这样的图形叫轴对称图形,由定义可得,只有B选项中的图形符合,
故选B
【点拨】本题考查轴对称图形的识别,较简单.
2.A
【分析】
根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.
解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),故A正确;
B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,故B错误;
C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,故C错误;
D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,故D错误;
故选A.
【点拨】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.
3.C
【分析】
根据合并同类项的运算法则、单项式乘单项式和幂的乘方的运算法则解答即可.
解:A、,原计算错误,故此选项不符合题意;
B、,原计算错误,故此选项不符合题意;
C、,原计算正确,故此选项符合题意;
D、,原计算错误,故此选项不符合题意.
故选:C.
【点拨】本题主要考查了合并同类项,单项式乘单项式和幂的乘方.解题的关键是明确不是同类项的单项式不能合并.
4.A
【分析】
根据必然事件的意义,结合具体的问题情境逐项进行判断即可.
解:A、任意画一个三角形,其内角和是180°;属于必然事件,故此选项符合题意;
B、打开电视机,正在播放新闻联播;属于随机事件,故此选项不符合题意;
C、随机买一张电影票,座位号是奇数号;属于随机事件,故此选项不符合题意;
D、掷一枚质地均匀的硬币,正面朝上;属于随机事件,故此选项不符合题意;
故选:A.
【点拨】本题考查了随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.
5.D
解:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
解:由题意可得,×100%=30%,
解得,n=20(个).
故估计n大约有20个.
故选D.
点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.
6.B
【分析】
分80°角是顶角与底角两种情况讨论求解.
解:①80°角是顶角时,三角形的顶角为80°,
②80°角是底角时,顶角为180°﹣80°×2=20°,
综上所述,该等腰三角形顶角的度数为80°或20°.
故选:B.
【点拨】考点:等腰三角形的性质.
7.B
【分析】
根据已知条件和添加条件,结合全等三角形的判断方法即可解答.
解:选项A,添加,
在和中,
,
∴≌(ASA),
选项B,添加,
在和中,,,,无法证明≌;
选项C,添加,
在和中,
,
∴≌(SAS);
选项D,添加,
在和中,
,
∴≌(AAS);
综上,只有选项B符合题意.
故选B.
【点拨】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.
8.D
解:根据题意,所作出的是∠OBF=∠AOB,,
根据作一个角等于已知角的作法,是以点E为圆心,DC为半径的弧.
故选D.
9.B
【分析】
同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.根据此定义即可得出答案.
解:∵直线AD,BE被直线BF和AC所截,
∴∠1与∠2是同位角,∠5与∠6是内错角,
故选:B.
【点拨】本题考查的知识点是同位角和内错角的概念,解题的关键是熟记内错角和同位角的定义.
10.D
解:每浆洗一遍,注水阶段,洗衣机内的水量从0开始逐渐增多;
清洗阶段,洗衣机内的水量不变且保持一段时间;
排水阶段,洗衣机内的水量开始减少,直至排空为0.
纵观各选项,只有D选项图象符合.
故选D.
11.C
解:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选C.
12.D
解:根据等腰三角形的性质及角平分线定义可得有关角之间的相等关系.运用三角形全等的判定方法AAS或ASA判定全等的三角形.
解:∵AB=AC,∴∠ABC=∠ACB.
∵BD平分∠ABC,CE平分∠ACB,
∴∠ABD=∠CBD=∠ACE=∠BCE.
∴①△BCD≌△CBE (ASA);
③△BDA≌△CEA (ASA);
④△BOE≌△COD (AAS或ASA).
故选D.
此题考查等腰三角形的性质和全等三角形的判定,难度不大.
13.2a3
【分析】
单项式除以单项式就是将系数除以系数作为结果的系数,相同字母除以相同字母作为结果的一个因式即可.
解:6a6÷3a3=(6÷3)(a6÷a3)=2a3.
故答案为:2a3.
14.y=20(x+1)2
解:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,
∴一年后产品是:20(1+x),
∴两年后产品y与x的函数关系是:y=20(1+x)2.
故答案为y=20(x+1)2.
【点拨】本题考查了函数关系式,利用增长问题获得函数解析式是解题关键,注意增加x倍是原来的(x+1)倍.
15.60.
解:如图,
由题意得:a∥b,∠ACB=90°.
∵∠1=30°,∴∠3=180°-∠ACB-∠1=180°-90°-30°=60°.
∴∠2=∠3=60°.
16.
【分析】
根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.
解:三角形的三边长分别为3,,4,
,
即,
故答案为.
【点拨】本题考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系.
17.BD=BE或AD=CE或BA=BC
解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=90°,
在Rt△AEH中,∠EAH=90°﹣∠AHE,
又∵∠EAH=∠BAD,
∴∠BAD=90°﹣∠AHE,
在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,
∴∠EAH=∠DCH,
∴∠EAH=90°﹣∠CHD=∠BCE,
所以根据AAS添加AH=CB或EH=EB;
根据ASA添加AE=CE.
可证△AEH≌△CEB.
故填空答案:AH=CB或EH=EB或AE=CE.
【点拨】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.
18..
解:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,
∵AD=A′D=3,BE=BE′=1,
∴AA′=6,AE′=4.
∵DQ∥AE′,D是AA′的中点,
∴DQ是△AA′E′的中位线,
∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,
∵BP∥AA′,
∴△BE′P∽△AE′A′,
∴,即,BP=,CP=BC﹣BP==,
S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=,
故答案为.
【点拨】本题考查1.轴对称-最短路线问题;2.正方形的性质.
19.(1);(2)
【分析】
(1)先算乘方,再算乘除即可;
(2)利用完全平方公式以及平方差公式进行计算即可.
解:(1)原式;
(2)原式.
【点拨】本题考查的知识点是整式的混合运算,掌握整式的混合运算的运算顺序非常关键.
20.,
【分析】
原式中括号中利用完全平方公式,多项式乘多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
解:原式=
=
=
当时,原式=
【点拨】此题考查了整式的混合运算-化简求值,熟练掌握运算法则及公式是解本题的关键.
21.(1)阴影部分的面积为:y=32-4x(0<x≤4);(2)PB=3
【分析】
(1)根据梯形的面积公式得出y与x的函数关系式即可;
(2)利用(1)中所求得出y=20,求出x即可得出答案.
解:(1)设PB=x,长方形ABCD中,AB=4,BC=8,
则图中阴影部分的面积为:y=(4-x+4)×8=32-4x(0≤x≤4).
(2)当y=20时,20=32-4x,
解得x=3,
即PB=3.
22.(1)见分析;(2)8
【分析】
(1)先作出四边形ABCD各个顶点关于直线m的对称点,再顺次连接起来,即可;
(2)四边形对角线的乘积÷2,即可求解.
解:(1)如图所示:
(2).
【点拨】本题主要考查画轴对称图形以及四边形的面积,掌握轴对称图形的性质,是解题的关键.
23.(1)见分析;(2)见分析
(1)先利用SAS证明△ABF≌△AEC即可得到EC=BF;
(2)根据(1)中的全等推得∠AEC=∠ABF,根据∠BAE=90°,∠AEC+∠ADE=90°,再根据对顶角相等,等量代换后,推得∠BMD=90°.
解:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,
∴∠EAC=∠BAF,
在△ABF和△AEC中,
,
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如图,由(1)得:△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∴∠ADE=∠BDM(对顶角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,
∴EC⊥BF.
【点拨】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
24.(1)①见分析;②证明见分析;③证明见分析;(2)∠DCE=45°.
【分析】
(1)①根据题意作出图形即可;②根据余角的性质得到结论;③证法1:在AB上取点F,使得BF=BD,连接DF,根据等腰直角三角形的性质得到∠BFD=45°,根据全等三角形的性质得到∠DCE=∠AFD=135°;证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,根据全等三角形的性质即可得到结论;证法3:过点E作EF⊥BC交BC的延长线于点F,根据全等三角形的性质即可得到结论;
(2)过E作EF⊥DC于F,根据全等三角形的性质得到DB=EF,AB=DF=BC,根据线段的和差得到FC=EF,于是得到结论.
解:(1)①如图①所示;
②证明:∵∠B=90°,
∴∠BAD+∠BDA=90°,
∵∠ADE=90°,点D在线段BC上,
∴∠BAD+∠EDC=90°,
∴∠BAD=∠EDC;
②证法1:如图,在AB上取点F,使得BF=BD,连接DF,
∵BF=BD,∠B=90°,
∴∠BFD=45°,
∴∠AFD=135°,
∵BA=BC,
∴AF=CD,
在△ADF和△DEC中,
∴△ADF≌△DEC,
∴∠DCE=∠AFD=135°;
证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,
∴DC=DF,∠DFC=∠DCF,
∵∠B=90°,AB=BC,
∴∠ACB=45°,∠DFC=45°,
∴∠DFC=90°,∠AFD=135°,
∵∠ADE=∠FDC=90°,
∴∠ADF=∠EDC,
在△ADF≌△CDE中,,
∴△ADF≌△CDE,
∴∠AFD=∠DCE=135°;
证法3:过点E作EF⊥BC交BC的延长线于点F,
∴∠EFD=90°,
∵∠B=90°,
∴∠EFD=∠B,
在△ABD和△DFE中,,
∴△ABD≌△DFE,
∴AB=DF,BD=EF,
∵AB=BC,
∴BC=DF,BC﹣DC=DF﹣DC,
即BD=CF,
∴EF=CF,
∵∠EFC=90°,
∴∠ECF=45°,∠DCE=135°;
(2)解:∠DCE=45°,
理由:过E作EF⊥DC于F,
∵∠ABD=90°,
∴∠EDF=∠DAB=90°﹣∠ADB,
在△ABD和△DFE中,,
∴△ABD≌△DFE,
∴DB=EF,AB=DF=BC,
∴BC﹣BF=DF﹣BF,
即FC=DB,
∴FC=EF,
∴∠DCE=45°.
相关试卷
这是一份期中复习与测试(一)-【挑战满分】2022-2023学年八年级数学下册阶段性复习精选精练(浙教版),共18页。试卷主要包含了下列运算中正确的是,一元二次方程配方后可化为,已知的解是,,则方程的解是等内容,欢迎下载使用。
这是一份期末复习与测试(2)-【挑战满分】七年级数学下册阶段性复习精选精练(北师大版),共18页。试卷主要包含了下列计算正确的是,下列事件是必然事件的是等内容,欢迎下载使用。
这是一份期中复习与测试(2)-【挑战满分】七年级数学下册阶段性复习精选精练(北师大版),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。