终身会员
搜索
    上传资料 赚现金

    第08讲 幂函数及函数的综合 期末大总结(原卷版)

    立即下载
    加入资料篮
    第08讲 幂函数及函数的综合 期末大总结(原卷版)第1页
    第08讲 幂函数及函数的综合 期末大总结(原卷版)第2页
    第08讲 幂函数及函数的综合 期末大总结(原卷版)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第08讲 幂函数及函数的综合 期末大总结(原卷版)

    展开

    这是一份第08讲 幂函数及函数的综合 期末大总结(原卷版),共7页。


    8讲 幂函数及函数的综合 期末大总结

       

    第一部分:必会知识结构导图

    第二部分:考点梳理知识方法技巧大总结

    第三部分:必会技能常考题型及思想方法大归纳

    必会题型一:幂函数的概念与判断

    必会题型二:幂函数的定义域值域图象

    必会题型三:幂函数的奇偶性及单调性

    必会题型四:几类常见函数模型

    必会题型五:函数的综合应用

     

    第一部分:知识结构导图速看

    第二部分:考点梳理知识方法技巧大总结

    1幂函数的概念:如果一个函数,底数是自变量x,指数是常数α(α为任意实数),即yxα,这样的函数称为幂函数.幂函数满足三个特征:

    (1)xα的系数为1

    (2)底数只能是自变量x,指数是常数;

    (3)项数只有一项.只有满足这三个特征,才是幂函数.

    形如y(2x)αy2·xαyxα2等形式的函数不是幂函数.

    2幂函数的图像及性质

    (1)幂函数在(0,+∞)上都有定义;幂函数的图像过定点(11)

    (2)α0时,在(0,+∞)上单调递增;当α0时,在(0,+∞)上单调递减.

    (3)α0时,幂函数与坐标轴无交点

    3幂函数的奇偶性:(其中互质,)

    (1)为奇数,则的奇偶性取决于是奇数还是偶数.是奇数时,是奇函数;当是偶数时,是偶函数.

    (2)为偶数,则必是奇数,此时既不是奇函数,也不是偶函数.

    4常见几类函数模型

    函数模型

    函数解析式

    一次函数模型

    (为常数,)

    二次函数模型

    (为常数,)

    分段函数模型

    幂函数模型

    (为常数,)

    第三部分:必会技能常考题型及思想方法大归纳

    必会题型一:幂函数的概念与判断

    1(2022·广东·深圳外国语学校致远高中高一阶段练习)下列函数是幂函数的是(    )

    A B

    C D

    2(2021·全国·高一专题练习)下列函数中,不是幂函数的是(    )

    Ay2x Byx1 Cy Dyx2

    3[多选](2021·湖南·长沙市实验中学高一期中)(多选)下列函数是幂函数的是(    )

    Ay5x Byx5

    Cy Dy(x1)3

    必会题型二:幂函数的定义域值域图象

    1(2022·全国·高一专题练习)已知幂函数的图象过点,则的定义域为(    )

    AR B

    C D

    2(2022·黑龙江·大庆实验中学高一阶段练习)已知幂函数的图象不过原点,则实数m的取值为(    )

    A-2 B0 C2 D2-2

    3.已知幂函数(pqZpq互质)的图象关于y轴对称,如图所示,则(    )

    Apq均为奇数,且

    Bq为偶数,p为奇数,且

    Cq为奇数,p为偶数,且

    Dq为奇数,p为偶数,且

    4[多选](2022·甘肃·永昌县第一高级中学高一期中)下列说法正确的是(    )

    A.若幂函数的图象经过点,则幂函数的解析式为.

    B.若函数,则在区间上单调递减.

    C.若正实数满足,则.

    D.若函数,则对任意,有.

    5(1)函数的定义域是_____,值域是_____

    (2)函数的定义域是_____,值域是_____

    (3)函数的定义域是_____,值域是_____

    (4)函数的定义域是_____,值域是_____.

    6(2021·浙江·高一期中)已知幂函数上单调递增.

    (1)m的值和函数的解析式;

    (2)解关于x的不等式.

     

     

     

     

     

     

     

    必会题型三:幂函数的奇偶性及单调性

    1(2022·辽宁·高三阶段练习)已知幂函数上是减函数,则实数的值为(    )

    A2 B0 C D2

    2.已知函数()是幂函数,其图像关于原点对称,且与轴均无交点;则下列说法错误的是(    )

    A.函数既无最大值也无最小值

    B.函数恰有两个不同零点

    C.函数的定义域为

    D.函数为减函数

    3[多选](2021·山东·临沂市兰山区教学研究室高一期中)关于幂函数,下列说法正确的是(    )

    A.若,则的定义域是

    B.若,则是减函数

    C.若的图象经过点,则其解析式为

    D.若,则对于任意的,都有

    4(2022·内蒙古·阿拉善右旗第一中学高一期中)已知幂函数)是偶函数,且在上单调递增.

    (1)求函数的解析式;

    (2),求的取值范围;

    (3)若实数)满足,求的最小值.

     

     

     

     

     

     

     

    必会题型四:几类常见函数模型

    1(2022·河南·高一期中)某小型服装厂生产一种风衣,日销货量(单位:件)(N*)与货价p(单位:元/)之间的关系为p1602,生产x件所需成本C10030(单位:元),当工厂日获利不少于1 000元时,该厂日产量最少生产风衣的件数是___________

    2.某公司每年需购买某种元件8000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?

     

     

     

     

     

     

     

     

     

    3(2021·福建·莆田第四中学高一阶段练习)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元.

    (1)分别写出两类产品的收益与投资额的函数关系.

    (2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其收益最大为多少万元?

     

     

     

     

     

     

     

     

    4(2022·广东·福田外国语高中高一期中)第四届中国国际进口博览会于2021115日至10日在上海举行.本届进博会有4000多项新产品新技术新服务.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,生产x千台空调,需另投入资金R万元,且.经测算,当生产10千台空调时需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.

    (1)2022年该企业年利润W(万元)关于年产量x(千台)的函数关系式;

    (2)2022年产量为多少时,该企业所获年利润最大?最大年利润为多少?注:利润=销售额-成本.

     

     

     

     

     

     

    必会题型五:函数的综合应用

    1(2022·辽宁·凤城市第一中学高一期中)已知函数的值域为,则实数的取值范围是(    )

    A B

    C D

    2[多选](2022·浙江省临安中学高一期中)某同学在研究函数时,分别给出下面四个结论,其中正确的结论是(    )

    A.函数的定义域是 B.函数的值域为

    C.函数在上单调递增 D.方程有实根

    3[多选](2022·山东省青岛第十九中学高一期中)已知函数的图象关于轴对称,且对于,当时,恒成立,若对任意的恒成立,则实数的范围可以是下面选项中的(    )

    A B C D

    4(2022·河南洛阳·高一期中)已知函数的定义域为R,对任意实数xy.当时,

    (1)的值;

    (2)判断函数的单调性并加以证明;

    (3)解不等式

     

     

     

     

     

     

     

     

     

    5(2021·上海市光明中学高一期中)设函数,函数,其中为常数且,令函数为函数的积函数.

    (1)求函数的表达式,并求其定义域;

    (2)时,求函数的值域;

    (3)是否存在自然数,使函数的值域为.

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map