沪科版八年级下册第19章 四边形19.3 矩形 菱形 正方形获奖课件ppt
展开欣赏下面图片,图片中框出的图形是你熟悉的吗?
欣赏视频:前面的图片中出现的图形是平行四边形,和视频中的菱形一样,那么什么是菱形呢?它有什么特点?这节课让我们一起来学习吧!
前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就变成矩形.
思考 如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢?
平行四边形不一定是菱形.
活动1 如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?观看下面的视频:
问题2 根据上面的折叠过程,猜想菱形的四边在数量 上有什么关系?菱形的两条对角线有什么关系?
活动2 在自己剪出的菱形上画出两条折痕,折叠手中的 图形 (如图),并回答以下问题:
问题1 菱形是轴对称图形吗? 如果是, 指出它的对称轴. 是,两条对角线所在的直线都是它的对称轴.
猜想1 菱形的四条边都相等.
猜想2 菱形的两条对角线互相垂直,并且每一条对角线 平分一组对角.
求证:(1) AB = BC = CD = AD; (2) AC⊥BD,∠DAC =∠BAC,∠DCA =∠BCA,∠ADB =∠CDB,∠ABD =∠CBD.
证明:(1) ∵ 四边形 ABCD 是平行四边形, ∴ AB = CD,AD = BC (平行四边形的对边相等). 又∵ AB = AD, ∴ AB = BC = CD =AD.
已知:如图,在平行四边形 ABCD 中,AB = AD,对角线 AC 与 BD 相交于点 O.
(2) ∵ AB = AD, ∴△ABD 是等腰三角形. 又∵ 四边形 ABCD 是平行四边形, ∴ OB = OD(平行四边形的对角线互相平分). 在等腰三角形 ABD 中,OB = OD, ∴ AO⊥BD,AO 平分∠BAD, 即 AC⊥BD,∠DAC =∠BAC. 同理可证∠DCA =∠BCA, ∠ADB =∠CDB,∠ABD =∠CBD.
菱形是特殊的平行四边形,它除了具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.
对称性:是轴对称图形.边:四条边都相等.对角线:互相垂直,且每条对角线平分一组对角.
角:对角相等.边:对边平行且相等.对角线:相互平分.
例1 如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,BD=12 cm,AC=6 cm,求菱形的周长.
解:∵ 四边形 ABCD 是菱形,∴ AC⊥BD, AO= AC,BO= BD.∵ AC=6 cm,BD=12 cm,∴ AO=3 cm,BO=6 cm.在 Rt△ABO 中,由勾股定理得∴ 菱形的周长为 4AB=4× = (cm).
例2 如图,在菱形 ABCD 中,CE⊥AB 于点 E,CF⊥AD 于点 F,求证:AE=AF.
证明:连接 AC. ∵ 四边形 ABCD 是菱形, ∴ AC 平分∠BAD,即∠BAC=∠DAC. ∵ CE⊥AB,CF⊥AD, ∴∠AEC=∠AFC=90°. 又∵ AC=AC,∴△ACE≌△ACF. ∴ AE=AF.
菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.
证明:∵ 四边形 ABCD 为菱形,∴ AD∥BC,AD=BA, ∠ABC=∠ADC=2∠ADB.∴∠DAE=∠AEB.∵ AB=AE,∴∠ABC=∠AEB. ∴∠ABC=∠DAE. ∵∠DAE=2∠BAE,∴∠BAE=∠ADB. 又∵ AD=BA,∴△AOD≌△BEA.∴ AO=BE.
例3 如图,E为菱形ABCD的边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
1. 如图,在菱形 ABCD 中,已知∠A=60°,AB=5,则 △ABD 的周长是 ( ) A. 10 B. 12 C. 15 D. 20
2. 如图,菱形 ABCD 的周长为 48 cm,对角线 AC、BD 相交于 O 点,E 是 AD 的中点,连接 OE,则线段 OE 的长为_______.
问题1 菱形是特殊的平行四边形,那么能否利用平行四边形的面积公式计算菱形 ABCD 的面积呢?
思考 前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形 ABCD 的面积呢?
能. 过点 A 作 AE⊥BC 于点 E,则 S菱形ABCD = 底×高 = BC·AE.
问题2 如图,四边形 ABCD 是菱形,对角线 AC,BD 交于点 O,试用对角线表示出菱形 ABCD 的面积.
解:∵ 四边形 ABCD 是菱形,∴ AC⊥BD.∴ S菱形ABCD = S△ABC + S△ADC= AC·BO + AC·DO= AC·(BO + DO)= AC·BD.
菱形的面积 = 底×高 = 对角线乘积的一半
例4 如图,在菱形 ABCD 中,点 O 为对角线 AC 与 BD 的交点,且在△AOB 中,OA=5,OB=12. 求菱形 ABCD 两对边的距离 h.
解:在 Rt△AOB 中,OA=5,OB=12,∴ S△AOB= OA·OB= ×5×12=30.∴ S菱形ABCD=4S△AOB=4×30=120.而菱形两组对边的距离相等,∴ S菱形ABCD=AB·h=13h.∴ 13h=120,解得 h= .
菱形的面积计算有如下方法:① 一边长与两对边的距离 (即菱形的高) 的积;② 四个小直角三角形的面积之和 (或一个小直角三角形面积的 4 倍);③ 两条对角线长度乘积的一半.
例5 如图,菱形花坛 ABCD 的边长为 20 m,∠ABC=60°,沿着菱形的对角线修建了两条小路 AC 和 BD,求两条小路的长和花坛的面积(结果分别精确到 0.01 m 和 0.1 m2).
解:∵ 花坛 ABCD 是菱形,
【变式题】如图,在菱形 ABCD 中,∠ABC 与∠BAD 的度数比为 1∶2,周长是 8 cm.求:(1)两条对角线的长度;(2)菱形的面积.
解:(1)∵ 四边形 ABCD 是菱形,∴ AB = BC,AC⊥BD,AD∥BC.∴∠ABC +∠BAD = 180°.∵∠ABC 与∠BAD 的度数比为 1∶2,∴∠ABC = ×180° = 60°.∴ △ABC 是等边三角形,∠ABO = ∠ABC = 30°.∵ 菱形 ABCD 的周长是 8 cm,∴ AB = 2 cm.
菱形中的相关计算通常转化为直角三角形或等腰三角形求解,当菱形中有一个角是 60° 或 120° 时,菱形可被一条对角线分为两个等边三角形.
如图,已知菱形的两条对角线分别为 6 cm 和 8 cm,则这个菱形的高 DE 为( )A. 2.4 cm B. 4.8 cm C. 5 cm D. 9.6 cm
1. 菱形具有而一般平行四边形不具有的性质是( ) A. 对角相等 B. 对边相等 C. 对角线互相垂直 D. 对角线相等
2. 如图,在菱形 ABCD 中,AC = 8,BD = 6,则△ABD 的周长等于( ) A. 18 B. 16 C. 15 D. 14
3. 根据下图填一填:(1)已知菱形 ABCD 的周长是 12 cm, 那么它的边长是 ______.(2)在菱形 ABCD 中,∠ABC=120°, 则∠BAC=_____°.(3)菱形 ABCD 的两条对角线长分别为 6 cm 和 8 cm, 则菱形的边长是______.
(4) 菱形的一个内角为 120°,平分这个内角的对角 线长为 11 cm,菱形的周长为_______.
(5) 菱形的面积为 64 cm2,两条对角线的比为 1∶2, 那么菱形最短的那条对角线长为_______.
4. 如图,四边形 ABCD 是边长为 13 cm 的菱形,其中 对角线 BD 长 10 cm.
求:(1) 对角线 AC 的长度; (2) 菱形 ABCD 的面积.
∵ 四边形 ABCD 是菱形,
∴∠AED = 90°,
(2) 菱形 ABCD 的面积为
∴ AC = 2AE = 2×12 = 24 (cm).
5. 如图,四边形 ABCD 是菱形,F 是 AB 上一点,DF 交 AC 于 E. 求证:∠AFD =∠CBE.证明:∵ 四边形 ABCD 是菱形,∴ CB = CD,CA 平分∠BCD.∴∠BCE =∠DCE.又 CE = CE,∴△BCE≌△DCE (SAS).∴∠CBE =∠CDE. ∵ 在菱形 ABCD 中,AB∥CD, ∴∠AFD =∠EDC.∴∠AFD =∠CBE.
6. 如图,O 是菱形 ABCD 对角线 AC 与 BD 的交点,CD =5 cm,OD=3 cm;过点 C 作 CE∥DB,过点 B 作 BE∥AC,CE 与 BE 相交于点 E. (1) 求 OC 的长;
解:∵ 四边形 ABCD 是菱形,∴ AC⊥BD.在 Rt△OCD 中,由勾股定理得 OC=4 cm.
解:∵ CE∥DB,BE∥AC,∴ 四边形 OBEC 为平行四边形.又∵ AC⊥BD,即∠COB=90°,∴ 平行四边形 OBEC 为矩形.∵ OB=OD=3 cm,∴ S矩形OBEC=OB·OC=4×3=12 (cm2).
6. 如图,O 是菱形 ABCD 对角线 AC 与 BD 的交点,CD =5 cm,OD=3 cm;过点 C 作 CE∥DB,过点 B 作 BE∥AC,CE 与 BE 相交于点 E. (2) 求四边形 OBEC 的面积.
初中数学沪科版八年级下册19.3 矩形 菱形 正方形作业课件ppt: 这是一份初中数学沪科版八年级下册19.3 矩形 菱形 正方形作业课件ppt,共59页。
数学八年级下册19.3 矩形 菱形 正方形作业ppt课件: 这是一份数学八年级下册19.3 矩形 菱形 正方形作业ppt课件,共18页。
初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学课件ppt: 这是一份初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学课件ppt,共23页。PPT课件主要包含了知识要点,菱形的性质,菱形的面积,平行四边形,练一练等内容,欢迎下载使用。