终身会员
搜索
    上传资料 赚现金
    2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版)
    立即下载
    加入资料篮
    2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版)01
    2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版)02
    2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版)03
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版)

    展开
    这是一份2023届福建省莆田市第五中学高三上学期12月月考数学试题(解析版),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023届福建省莆田市第五中学高三上学期12月月考数学试题

     

    一、单选题

    1.已知集合,集合,则    

    A B C D

    【答案】D

    【解析】化简集合AB,根据交集运算求解即可.

    【详解】可得

    解得

    所以

    时,

    所以

    故选:D

    2.已知为复数,有以下四个命题,其中真命题的序号是(  )

    ,则

    ,则

    ,则

    是虚数,则都是虚数.

    A①④ B C②③ D①②③

    【答案】C

    【分析】根据复数的性质分别判断即可.

    【详解】解:为复数,

    ,因为没有大小(虚部为0,即为实数时除外),故是错误的,

    ,设,则,由,得,所以,正确,

    ,则,正确,

    是虚数,不一定都是虚数,比如,而是虚数,故错误,

    ②③正确,

    故选:C.

    3.下列函数中,既是偶函数,又在上是增函数的是(   

    A B C D

    【答案】C

    【解析】利用奇偶性的定义判断函数奇偶性,判断AD错误,结合常见基本初等函数的单调性判断B错误,C正确即可.

    【详解】选项A中,,定义域R,则是奇函数,不符合题意;

    选项D中,,定义域R,则是奇函数,不符合题意;

    选项B中,,定义域R,则是偶函数,但二次函数在在上是减函数,在上是增函数,故不符合题意;

    选项C中,,定义域为,则是偶函数.时,是减函数,所以由偶函数图象关于y轴对称可知,上是增函数,故符合题意.

    故选:C.

    【点睛】方法点睛:

    定义法判断函数奇偶性的方法:

    1)确定定义域关于原点对称;

    2)计算

    3)判断的关系,若,则是偶函数;若,则是奇函数;若两者均不成立,则是非奇非偶函数.

    4.将函数的图象上所有点的横坐标缩短到原来的一半,坐标不变,得到函数的图象,则下列说法中正确的是(    

    A B在区间上是增函数

    C图象的一条对称轴 D图象的一个对称中心

    【答案】C

    【分析】利用三角函数的图象伸缩变换求得,然后逐一分析四个选项得答案.

    【详解】函数的图象上所有点的横坐标缩短到原来的一半,

    坐标不变,得到函数的解析式

    对于A,故A错误;

    对于B:由得,,故在区间上有增有减,故B错误;对于C

    所以图象的一条对称轴,故C正确;

    对于D

    所以不是图像的一个对称中心,故D错误.

    故选:C

    5.数列中的前项和,数列的前项和为,则    

    A B C D

    【答案】D

    【分析】求出的通项,进而可得的通项,再求和即可.

    【详解】时,

    时,

    经检验不满足上式,所以

    ,则

    所以

    故选:D.

    6.在三棱锥中,,则该三棱锥的外接球的表面积为(    

    A B C D

    【答案】A

    【解析】中由余弦定理求得,即知为等边三角形,又由已知,若的外接圆的圆心为为菱形,则平面ABC,进而确定外接球球心O,由球心与相关点的位置关系求球的半径,最后求表面积即可.

    【详解】中,,即,又

    为等边三角形

    根据题意,有如下示意图:

    如图,设的外接圆的圆心为,连接,连接PH.

    由题意可得,且.

    由上知:,又

    ,由平面ABC.

    O为三棱锥外接球的球心,连接OCO,垂足为D,则外接球的半径R满足,代入解得,即有

    三棱锥外接球的表面积为.

    故选:A.

    【点睛】关键点点睛:利用三角形的性质确定三棱锥一面的外接圆圆心,由三棱锥外接球球心与面的外接圆圆心的关系以及已知线段的长度求球体半径,即可求球体的体积.

    7.在中,角的对边分别为,若成等差数列,则(    

    A B C D

    【答案】D

    【分析】根据等差数列定义可得,利用切化弦、两角和差公式和正余弦定理化简等式,整理可得结论.

    【详解】成等差数列,

    整理可得:.

    故选:D

    8.若对任意的,且,都有,则m的最小值是(    

    A B  C1 D

    【答案】A

    【分析】已知不等式变形为,引入函数

    则其为减函数,由导数求出的减区间后可的最小值.

    【详解】因为

    所以由

    可得

    所以上是减函数,

    时,递增,

    时,递减,

    的减区间是

    所以由题意的最小值是

    故选:A

     

    二、多选题

    9.已知alog3πblogπ3,则(    

    Aababbc Bacbcbc

    Cacbcbc Dbcabab

    【答案】CD

    【解析】根据对数函数的单调性,判定的大致范围,即可求解.

    【详解】因为0logπ31log3π0b1a

    所以acbc0

    所以C正确,B错误.

    因为ablog3π×logπ31ablog3πlogπ31

    所以D正确,A错误.

    故选:CD

    10.声音是由物体振动产生的波,每一个音都是由纯音合成的.已知纯音的数学模型是函数.我们平常听到的乐音是许多音的结合,称为复合音.若一个复合音的数学模型是函数,则(    

    A的最大值为 B的最小正周期

    C曲线的对称轴 D为曲线的对称中心

    【答案】BD

    【分析】分析函数不能同时取得最大值可判断A;由的最小正周期是的最小正周期是可判断B;计算是否成立可判断C;计算是否成立可判断D;进而可得正确选项.

    【详解】对于A:若的最大值为,则同时取得最大值,

    取得最大值时,,可得取不到

    取得最大值时,,此时

    取不到,所以不可能同时取得最大值,故选项A不正确;

    对于B:因为的最小正周期是的最小正周期是

    所以的最小正周期,故选项B正确;

    对于C

    所以不恒成立,即,所以不是

    曲线的对称轴,故选项C不正确;

    对于D

    所以对于任意的恒成立,所以为曲线的对称中心,故选项D正确;

    故选:BD.

    11.如图,AC为圆锥SO底面圆O的直径,点B是圆O上异于AC的动点,,则下列结论正确的是(     

    A.圆锥SO的侧面积为

    B.三棱锥体积的最大值为

    C的取值范围是

    D.若E为线段AB上的动点,则的最小值为

    【答案】ABD

    【分析】先求出圆锥的母线长,利用圆锥的侧面积公式判断选项A;当时,的面积最大,此时体积也最大,利用圆锥体积公式求解即可判断选项B;先用取极限的思想求出的范围,再利用,求范围即可判断选项C;将为轴旋转到与共面,得到,则,利用已知条件求解即可判断选项D.

    【详解】中,

    则圆锥的母线长,半径

    对于选项A:圆锥的侧面积为:,故选项A正确;

    对于选项B:当时,的面积最大,

    此时

    则三棱锥体积的最大值为:,故选项B正确;

    对于选项C:当点与点重合时,为最小角,当点与点重合时,,达到最大值,又因为不重合,则

    ,可得

    故选项C不正确;

    对于选项D:由

    ,又

    为等边三角形,则

    为轴旋转到与共面,得到

    为等边三角形,

    如图:

    因为

    故选项D正确;

    故选:ABD.

    【点睛】关键点点睛:本题考查了圆锥的侧面面积以及体积,取极限是解决本题角的范围问题的关键;利用将为轴旋转到与共面是解决求的最小值的关键.

    12.在数学课堂上,为提高学生探究分析问题的能力,教师引导学生构造新数列:现有一个每项都为1的常数列,在此数列的第项与第项之间插入首项为2,公比为2,的等比数列的前项,从而形成新的数列,数列的前项和为,则(    

    A B

    C D

    【答案】AD

    【分析】根据题意求出n,然后即可求出,再利用错位相减法求出新数列的和.

    【详解】介于第1与第1之间或者为这两个1当中的一个,

    则从新数列的第11到第1一共有项,

    从新数列的第11到第1一共有项,

    所以,解得

    ,所以,故A正确,B错误;

    所以,故D正确,C错误,

    故选:AD.

     

    三、填空题

    13.在棱长为4的正方体中,点是棱的中点,过点作与截面平行的截面,则所得截面的面积为____________.

    【答案】

    【分析】正方体中作过A的截面与平面PB1C平行,再根据题中的数据求出截面的面积.

    【详解】解:取CDA1B1的中点MN,连结C1MMAANNC1

    C1N//PCB1PANB1PCP=PC1NAN=N

    平面C1MAN//平面PCB1

    平面C1MAN就是过点A与界面平行的截面

    由图可知,平面为菱形,且

    正方体中,

    根据余弦定理,,且

    所以截面的面积

    故答案为:

    14.已知函数f(x)sin ωxcos ωx(ω>0),且f(x)在区间上递减,则ω________.

    【答案】2

    【分析】由辅助角公式对函数化简f(x)2sin(ωx),求出函数的单调递减区间,结合题意可得 ,求出12k1≤ω,进而由函数的周期可得1≤ω,由,可得对称中心的横坐标,进而可得结果.

    【详解】因为f(x)sin ωxcos ωx2sin(ωx)

    2ωx2kZ

    ,因为f(x)在区间上递减,

    所以 ,从而有

    又因为周期, 所以1≤ω,因为

    所以f(x)2sin(ωx)的一个对称中心的横坐标,

    所以ω(kZ)ω3k1kZ

    1≤ ω ,所以ω2.

    故答案为:2

    【点睛】本题考查了三角恒等变换和三角函数图象的性质,考查了计算能力,属于基础题目.

    15.已知,则的最小值为______

    【答案】

    【分析】利用算术根的几何意义,把所求转化为两个图形上点的距离最小值即可作答.

    【详解】可看成点到点的距离,

    而点的轨迹是直线,点的轨迹是曲线

    则所求最小值可转化为曲线上的点到直线距离的最小值,而曲线在直线上方,

    平移直线使其与曲线相切,则切点到直线距离即为所求,

    设切点,由,切点为

    到直线距离.

    故答案为:

    【点睛】关键点睛:涉及多变量的算术根问题,利用算术根的几何意义转化为两个动点的距离是解题的关键.

    16.已知,设函数,存在满足,且,则的取值范围是______.

    【答案】

    【分析】求得关于对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得的取值范围.

    【详解】由于存在满足,且,所以图象上存在关于对称的两个不同的点.

    1)对于,交换

    构造函数),所以的零点满足

    ,即

    由于,所以解得.

    2)设,则M关于y=x对称的点上,由,得,则

    时,

    两式相减,得,所以

    代入,得,又,所以

    ,则

    ,解得

    综上,a的取值范围为.

    故答案为:

    【点睛】本题解题关键是分两种情况讨论:(1存在关于对称的点,(2自身存在对称的两点.

     

    四、解答题

    17.在中,

    1)求的大小

    2)若的面积为,求的值

    【答案】1;(2.

    【分析】1)方法1:由余弦定理得,结合正弦定理由边化为角即可求解;方法2:由余弦定理得,结合余弦定理由角化成边即可求解;

    2)因为,结合正余定理即可求解结果.

    【详解】解:(1)方法1:由余弦定理

    .

    因为

    所以

    因为,所以

    由正弦定理

    因为,所以.

    因为,所以.

    方法2:由余弦定理

    .

    因为

    所以

    因为,所以.

    由余弦定理

    .

    所以.

    因为,所以

    2)因为,其中

    所以.

    由余弦定理得

    所以

    所以.

    因为

    所以

    18.已知函数.

    1)求函数的最小正周期;

    2)若函数,求函数的单调增区间.

    【答案】1)最小正周期为;(2.

    【解析】1)由三角函数恒等变换化简函数得,由三角函数的周期公式可得答案;

    2)由余弦的二倍角公式和辅助角公式得,再由正弦函数的性质可求得函数的单调增区间.

    【详解】解:(1)函数

    所以函数的最小正周期为.

    2

    ,得

    所以函数的单调增区间为.

    【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法.

    19.已知直线A之间的一个定点,并且点A的距离分别是BC分别是直线上的动点(BC都在的右侧).

    1)如图1,若,且,求的最小值;

    2)如图2,若,且,求面积的最小值.

    【答案】1;(2.

    【分析】1)记,根据题中条件,得到,利用换元法,令,可得,根据函数单调性,即可得出最小值;

    2)记,根据题中条件,结合三角恒等变换,得到;再由正弦函数的性质,即可求出最小值.

    【详解】1)记,因为,所以

    ,即,所以

    因此

    ,则,即

    因为,所以,则

    因此

    因为上单调递增,所以

    因此,当,即时,取得最小值

    2)记,因为,所以

    ,即

    所以

    因此的面积为

    因为,所以

    因此当,即时,取得最小值

    面积的最小值为.

    【点睛】关键点点睛:

    求解本题的关键在于根据题中条件,将线段和以及三角形的面积转化为三角函数的值域问题来求解;求解时,先设(或),根据三角恒等变换对应的公式,即可用(或)表示出,以及,进而即可求解.

    20.已知四棱锥PABCD,底面ABCD为菱形, ,H上的点,过的平面分别交于点MN,且平面

    1)证明:

    2)当的中点, 与平面所成的角为60°,求二面角的余弦值.

    【答案】1)证明见解析;(2

    【分析】1)先连接于点,连结,证明平面,证得,再利用线面垂直的性质证明,即证

    2)先证明平面,结合线面垂直关系和长度关系建立如图适当的空间直角坐标系,得到点坐标,再求两个平面的法向量求得二面角的大小即可.

    【详解】解:(1)证明:连接于点,连结.因为为菱形,所以,且的中点,因为,所以

    因为平面,所以平面

    因为平面,所以

    因为平面平面,且平面平面

    所以,所以

    2)由(1)知,因为,且的中点,

    所以,所以平面,所以与平面所成的角为

    所以,因为,所以

    分别以轴,建立如图所示空间直角坐标系,

    ,则

    所以

    记平面的法向量为,则

    ,则,所以

    记平面的法向量为,则

    ,则,所以.

    记二面角的大小为,由图可知该二面角为锐二面角,

    所以二面角的余弦值为

    【点睛】方法点睛:

    求空间角的常用方法:

    1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;

    2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.

    21.已知数列中,,设数列满足:

    1)求证:数列是等差数列,并求数列的通项公式;

    2)求数列的通项公式

    3)若数列满足,求数列的前项和

    【答案】1)证明见解析,;(2;(3)答案见解析.

    【分析】1)由已知得,可得可得答案;

    2)由(1)得

    两式相减可得答案;

    3)由(1)(2)得,分求和可得答案.

    【详解】1)证明

    由已知得

    所以

    ,所以是以1为首项,1为公差的等差数列,

    ,所以.

    2)由(1)得

    ①-②,所以.

    3)由(1)(2)得

    时,

    .

    时,

    时,

    综上所述,

    【点睛】本题考查了球数列的通项公式、求数列和的问题,解题的关键点是求出,考查了学生分析问题、解决问题的能力,以及分类讨论的思想.

    22.已知函数

    1)求函数的最大值;

    2)令,若既有极大值,又有极小值,求实数的范围;

    3)求证:时,.

    【答案】11;(2;(3)证明见解析.

    【解析】1)利用导数求出函数的单调性,求出函数的最值得解;

    2)等价于在区间上有两个不相等的实数根,解不等式组即得解;

    3)由题可得,再利用放缩法证明不等式.

    【详解】证明:

    上,,函数单调递增,

    上,,函数单调递减,

    时,.

    既有极大值,又有极小值,

    等价于在区间上有两个不相等的实数根.

    解得

    所以实数的范围.

    得,当

    可得

    于是

    于是 .

    【点睛】方法点睛:证明不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)放缩法;(5)数学归纳法;(6)反证法.本题不等式的证明用到了综合法和放缩法.

     

    相关试卷

    福建省莆田市莆田第一中学2024届高三上学期第一次调研数学试题(Word版附解析): 这是一份福建省莆田市莆田第一中学2024届高三上学期第一次调研数学试题(Word版附解析),文件包含福建省莆田市莆田第一中学2024届高三上学期第一次调研数学试题原卷版docx、福建省莆田市莆田第一中学2024届高三上学期第一次调研数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    2024届福建省莆田市第十中学高三上学期12月月考数学试题含答案: 这是一份2024届福建省莆田市第十中学高三上学期12月月考数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024届福建省莆田市第四中学高三上学期第三次月考数学试题含答案: 这是一份2024届福建省莆田市第四中学高三上学期第三次月考数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map