年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)

    重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)第1页
    重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)第2页
    重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)

    展开

    这是一份重难点23 空间向量及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共33页。
    
    重难点23 空间向量及其应用

    1.向量法求两条异面直线所成角的基本步骤:
    (1)建立合适的空间直角坐标系
    (2)求出各点的坐标,得出两直线的方向向量
    (3)利用向量夹角公式计算
    (4)判断所得夹角是两条直线所成角还是补角,并得出结论
    2.利用法向量求直线与平面所成的角的基本步骤为:
    ①建立空间直角坐标系;②求直线的方向向量;③求平面的法向量;
    ④计算:设线面角为θ,则;⑤作答.
    3.利用法向量求二面角大小的一般步骤:
    1)建立坐标系,写出点与所需向量的坐标;
    2)求出平面的法向量,平面的法向量
    3)进行向量运算求出法向量的夹角;
    4)通过图形特征或已知要求,确定二面角是锐角或钝角,得出问题的结果:




    重点考查有关空间的线线角、线面角、二面角与空间的距离的计算问题,2023年仍会是高考的热点,题型多为解答题的第2问.
    (建议用时:40分钟)
    一、单选题
    1.正三棱柱中,若,则与所成的角的大小为(    )
    A.60° B.90° C.45° D.120°
    【答案】B
    【解析】设,,,,
    则,,


    ∴,∴与所成的角的大小是,
    故选:B
    2.如图,是直三棱柱,,点,分别是,的中点,若,则与所成角的余弦值是(    )

    A. B. C. D.
    【答案】A
    【解析】以为原点,建立如图所示空间直角坐标系,

    设,则,,,,
    可得,,

    此时,与所成角的余弦值是.
    故选:A
    3.如图,在棱长为1的正方体中,M,N分别为和的中点,那么直线AM与CN夹角的余弦值为(    )

    A. B. C. D.
    【答案】D
    【解析】建立如图所示空间直角坐标系:

    则,
    所以,
    所以,
    故选:D
    4.如图,在空间直角坐标系中有直三棱柱,且,则直线与直线夹角的余弦值为( )

    A. B. C. D.
    【答案】A
    【解析】设CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉=

    5.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )

    A. B. C. D.
    【答案】D
    【解析】试题分析:以D点为坐标原点,以DA、DC、所在的直线为x轴、y轴、z轴,建立空间直角坐标系则A(2,0,0),B(2,2,0),C(0,2,0),(0,2,1)
    ∴ =(-2,0,1), =(-2,2,0),且为平面BB1D1D的一个法向量.
    ∴.∴BC1与平面BB1D1D所成角的正弦值为
    6.在长方体中,,,则异面直线与所成角的余弦值为
    A. B. C. D.
    【答案】C
    【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.
    详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,
    因为,所以异面直线与所成角的余弦值为,选C.

    二、填空题
    7.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.

    【答案】
    【解析】试题分析:分别以所在直线为轴,建立空间直角坐标系,设,则,

    ,即异面直线A1M与DN所成角的大小是
    8.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°.沿直线AC将△ACD翻折成△ACD',直线AC与BD'所成角的余弦的最大值是______.

    【答案】
    【解析】[方法一]:异面直线所成角的向量公式
    设直线与所成角为,设是中点,由已知得,如图,以为轴,为轴,过与平面垂直的直线为轴,建立空间直角坐标系,由,,,作于,翻折过程中,始终与垂直,,则,,因此可设,则,与平行的单位向量为,

    所以=,所以时,取最大值.
    故答案为:.
    [方法二]:几何法
    由翻折过程可以看出D'在以H为圆心,DH为半径的圆上运动,设E是圆H与平面ABC的交点, 易知E在CB上,且CE=1.设直线AC与BD'所成角为,则,,
    设点在平面上的投影为,,因此.

    [方法三]:考虑纯几何运算
    由折叠过程可知,在以为圆心,为半径的圆上运动,且垂直圆所在的平面,如图,作于,则,与所成角即为,且,,要使最大只需最小,
    在中,为定值,即只要最短,
    ,因此.

    [方法四]:【最优解】利用三余弦定理
    前面过程同方法三, 与所成角即为,
    是点在平面上的投影,可知:
    观察得当与点重合时,和同时达到最小,
    和同时取最大,此时有最大值,
    最后我们不难发现,其实在翻折过程中,,那么,即当与重合时有最大值.
    9.如图,正方体的棱长为1,C、D分别是两条棱的中点,A、B、M是顶点,那么点M到截面ABCD的距离是____________ .

    【答案】
    【解析】建立如图所示的空间直角坐标系,

    可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),
    ∴(0,1,0),(1,1,0),(0,,1),
    设(x,y,z)为平面ABCD的法向量,
    则,取y=﹣2,可得x=2,z=1,
    ∴(2,﹣2,1),
    ∴M到截面ABCD的距离d
    故答案为.
    10.如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为,则的最大值为 .

    【答案】
    【解析】建立坐标系如图所示.设,则.设,则,
    由于异面直线所成角的范围为,
    所以.,
    令,则,当时取等号.
    所以,当时,取得最大值.


    三、解答题
    11.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.

    (1)证明:MN∥平面C1DE;
    (2)求二面角A-MA1-N的正弦值.
    【答案】(1)见解析;(2).
    【解析】(1)连接,

    ,分别为,中点    为的中位线

    又为中点,且 且
    四边形为平行四边形
    ,又平面,平面
    平面
    (2)设,
    由直四棱柱性质可知:平面
    四边形为菱形    
    则以为原点,可建立如下图所示的空间直角坐标系:

    则:,,,D(0,-1,0)
    取中点,连接,则
    四边形为菱形且    为等边三角形
    又平面,平面
    平面,即平面
    为平面的一个法向量,且
    设平面的法向量,又,
    ,令,则,    

    二面角的正弦值为:
    12.已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.

    (1)证明:;
    (2)当为何值时,面与面所成的二面角的正弦值最小?
    【答案】(1)证明见解析;(2)
    【解析】(1)[方法一]:几何法
    因为,所以.
    又因为,,所以平面.又因为,构造正方体,如图所示,

    过E作的平行线分别与交于其中点,连接,
    因为E,F分别为和的中点,所以是BC的中点,
    易证,则.
    又因为,所以.
    又因为,所以平面.
    又因为平面,所以.
    [方法二] 【最优解】:向量法
    因为三棱柱是直三棱柱,底面,
    ,,,又,平面.所以两两垂直.
    以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.

    ,.
    由题设().
    因为,
    所以,所以.
    [方法三]:因为,,所以,故,,所以,所以.
    (2)[方法一]【最优解】:向量法
    设平面的法向量为,
    因为,
    所以,即.
    令,则
    因为平面的法向量为,
    设平面与平面的二面角的平面角为,
    则.
    当时,取最小值为,
    此时取最大值为.
    所以,此时.
    [方法二] :几何法
    如图所示,延长交的延长线于点S,联结交于点T,则平面平面.

    作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
    设,过作交于点G.
    由得.
    又,即,所以.
    又,即,所以.
    所以.
    则,
    所以,当时,.
    [方法三]:投影法
    如图,联结,

    在平面的投影为,记面与面所成的二面角的平面角为,则.
    设,在中,.
    在中,,过D作的平行线交于点Q.
    在中,.
    在中,由余弦定理得,,,
    ,,
    当,即,面与面所成的二面角的正弦值最小,最小值为.
    13.如图,四棱锥的底面是矩形,底面,,为的中点,且.

    (1)求;
    (2)求二面角的正弦值.
    【答案】(1);(2)
    【解析】(1)[方法一]:空间坐标系+空间向量法
    平面,四边形为矩形,不妨以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,

    设,则、、、、,
    则,,
    ,则,解得,故;
    [方法二]【最优解】:几何法+相似三角形法
    如图,连结.因为底面,且底面,所以.
    又因为,,所以平面.
    又平面,所以.

    从而.
    因为,所以.
    所以,于是.
    所以.所以.
    [方法三]:几何法+三角形面积法
       如图,联结交于点N.

    由[方法二]知.
    在矩形中,有,所以,即.
    令,因为M为的中点,则,,.
    由,得,解得,所以.
    (2)[方法一]【最优解】:空间坐标系+空间向量法
    设平面的法向量为,则,,
    由,取,可得,
    设平面的法向量为,,,
    由,取,可得,

    所以,,
    因此,二面角的正弦值为.
    [方法二]:构造长方体法+等体积法
      如图,构造长方体,联结,交点记为H,由于,,所以平面.过H作的垂线,垂足记为G.

    联结,由三垂线定理可知,
    故为二面角的平面角.
    易证四边形是边长为的正方形,联结,.

    由等积法解得.
    在中,,由勾股定理求得.
    所以,,即二面角的正弦值为.
    14.如图,在三棱锥中,,,为的中点.

    (1)证明:平面;
    (2)若点在棱上,且二面角为,求与平面所成角的正弦值.
    【答案】(1)证明见解析;(2).
    【解析】(1)因为,为的中点,所以,且.
    连结.
    因为,所以为等腰直角三角形,
    且 ,由知.
    由知,平面.
    (2)[方法一]:【通性通法】向量法
    如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系 .

    由已知得
    取平面的法向量.
    设,则.
    设平面的法向量为.
    由得 ,
    可取
    所以 .由已知得 .
    所以 .解得(舍去), .
    所以 .
    又 ,所以 .
    所以与平面所成角的正弦值为.
    [方法二]:三垂线+等积法
    由(1)知平面,可得平面平面.如图5,在平面内作,垂足为N,则平面.在平面内作,垂足为F,联结,则,故为二面角的平面角,即.

    设,则,在中,.在中,由,得,则.设点C到平面的距离为h,由,得,解得,则与平面所成角的正弦值为.
    [方法三]:三垂线+线面角定义法
    由(1)知平面,可得平面平面.如图6,在平面内作,垂足为N,则平面.在平面内作,垂足为F,联结,则,故为二面角的平面角,即.同解法1可得.

    在中,过N作,在中,过N作,垂足为G,联结.在中,.因为,所以.
    由平面,可得平面平面,交线为.在平面内,由,可得平面,则为直线与平面所成的角.
    设,则,又,所以直线与平面所成角的正弦值为.
    [方法四]:【最优解】定义法
    如图7,取的中点H,联结,则.过C作平面的垂线,垂足记为T(垂足T在平面内).联结,则即为二面角的平面角,即,得.

    联结,则为直线与平面所成的角.在中,,所以.
    15.如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.

    (1)证明:平面;
    (2)求二面角的余弦值.
    【答案】(1)证明见解析;(2).
    【解析】(1)[方法一]:勾股运算法证明
    由题设,知为等边三角形,设,
    则,,所以,

    又为等边三角形,则,所以,
    ,则,所以,
    同理,又,所以平面;
    [方法二]:空间直角坐标系法
    不妨设,则,由圆锥性质知平面,所以,所以.因为O是的外心,因此.
    在底面过作的平行线与的交点为W,以O为原点,方向为x轴正方向,方向为y轴正方向,方向为z轴正方向,建立空间直角坐标系,
    则,,,,.
    所以,,.
    故,.
    所以,.
    又,故平面.

    [方法三]:
    因为是底面圆O的内接正三角形,且为底面直径,所以.
    因为(即)垂直于底面,在底面内,所以.
    又因为平面,平面,,所以平面.
    又因为平面,所以.
    设,则F为的中点,连结.
    设,且,
    则,,.
    因此,从而.
    又因为,所以平面.

    [方法四]:空间基底向量法
    如图所示,圆锥底面圆O半径为R,连结,,易得,

    因为,所以.
    以为基底,平面,则,
    ,且,
    所以.
    故.所以,即.
    同理.又,所以平面.
    (2)[方法一]:空间直角坐标系法
    过O作∥BC交AB于点N,因为平面,以O为坐标原点,OA为x轴,ON为y轴建立如图所示的空间直角坐标系,

    则,
    ,,,
    设平面的一个法向量为,
    由,得,令,得,
    所以,
    设平面的一个法向量为
    由,得,令,得,
    所以
    故,
    设二面角的大小为,由图可知二面角为锐二面角,所以.
    [方法二]【最优解】:几何法
    设,易知F是的中点,过F作交于G,取的中点H,
    联结,则.
    由平面,得平面.
    由(1)可得,,得.
    所以,根据三垂线定理,得.
    所以是二面角的平面角.
    设圆O的半径为r,则,,,,所以,,.
    在中,,

    所以二面角的余弦值为.

    [方法三]:射影面积法
    如图所示,在上取点H,使,设,连结.
    由(1)知,所以.故平面.
    所以,点H在面上的射影为N.
    故由射影面积法可知二面角的余弦值为.
    在中,令,则,易知.所以.
    又,故
    所以二面角的余弦值为.

    16.在四棱锥中,底面是正方形,若.

    (1)证明:平面平面;
    (2)求二面角的平面角的余弦值.
    【答案】(1)证明见解析;(2).
    【解析】
    (1)取的中点为,连接.
    因为,,则,
    而,故.
    在正方形中,因为,故,故,
    因为,故,故为直角三角形且,
    因为,故平面,
    因为平面,故平面平面.
    (2)在平面内,过作,交于,则,
    结合(1)中的平面,故可建如图所示的空间坐标系.

    则,故.
    设平面的法向量,
    则即,取,则,
    故.
    而平面的法向量为,故.
    二面角的平面角为锐角,故其余弦值为.
    17.如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.
    (1)证明:直线平面;
    (2)点在棱上,且直线与底面所成角为,求二面角的余弦值.

    【答案】(1)见解析;(2)
    【解析】(1)取中点,连结,.
    因为为的中点,所以,,由得,又
    所以.四边形为平行四边形, .
    又,,故
    (2)

    由已知得,以A为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系A-xyz,则
    则,,,,
    ,则

    因为BM与底面ABCD所成的角为45°,而是底面ABCD的法向量,所以

    即(x-1)²+y²-z²=0
    又M在棱PC上,设

    由①,②得
    所以M,从而
    设是平面ABM的法向量,则

    所以可取.于是
    因此二面角M-AB-D的余弦值为
    18.如图,直三棱柱的体积为4,的面积为.

    (1)求A到平面的距离;
    (2)设D为的中点,,平面平面,求二面角的正弦值.
    【答案】(1)(2)

    【解析】(1)在直三棱柱中,设点A到平面的距离为h,
    则,
    解得,
    所以点A到平面的距离为;
    (2)取的中点E,连接AE,如图,因为,所以,
    又平面平面,平面平面,
    且平面,所以平面,
    在直三棱柱中,平面,
    由平面,平面可得,,
    又平面且相交,所以平面,
    所以两两垂直,以B为原点,建立空间直角坐标系,如图,

    由(1)得,所以,,所以,
    则,所以的中点,
    则,,
    设平面的一个法向量,则,
    可取,
    设平面的一个法向量,则,
    可取,
    则,
    所以二面角的正弦值为.

    相关试卷

    重难点23 空间向量及其应用-高考数学专练(全国通用):

    这是一份重难点23 空间向量及其应用-高考数学专练(全国通用),文件包含重难点23空间向量及其应用高考数学专练全国通用解析版docx、重难点23空间向量及其应用高考数学专练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版):

    这是一份重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共10页。试卷主要包含了双曲线的焦点到渐近线的距离为b,焦点三角形的面积等内容,欢迎下载使用。

    重难点14 平面向量的数量积及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版):

    这是一份重难点14 平面向量的数量积及其应用—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共7页。试卷主要包含了平面向量数量积运算的常用公式,设向量,则等于,已知是单位向量,.若向量满足,已知向量,满足,,,则等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map