- 重难点34 二项分布、正态分布、离散型随机变量的均值与方差—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版) 试卷 0 次下载
- 重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版) 试卷 0 次下载
- 重难点16 等差数列及其前n项和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版) 试卷 0 次下载
- 重难点30 计数原理、排列组合—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版) 试卷 0 次下载
- 重难点19 不等式性质与基本不等式—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版) 试卷 0 次下载
重难点25 椭圆—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版)
展开
重难点25 椭圆
1.用定义法求椭圆的标准方程
先根据椭圆的定义确定a2,b2的值,再结合焦点位置求出椭圆的方程.其中常用的关系有:
①b2=a2-c2;
②椭圆上任意一点到椭圆两焦点的距离之和等于2a;
③椭圆上一短轴顶点到一焦点的距离等于长半轴长a.
2.用待定系数法求椭圆的标准方程的步骤
3.椭圆的常用性质
(1)若点P在椭圆上,F为椭圆的一个焦点,则
①b≤|OP|≤a;
②a-c≤|PF|≤a+c.
(2)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长lmin=.
(3)与椭圆+=1(a>b>0)有共焦点的椭圆方程为+=1(λ>-b2).
(4)焦点三角形:椭圆上的点P(x0,y0)与两焦点F1,F2构成的△PF1F2叫做焦点三角形.若r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆+=1(a>b>0)中:
①当r1=r2,即点P为短轴端点时,θ最大;
②S=|PF1||PF2|sin θ=c|y0|,当|y0|=b,即点P为短轴端点时,S取得最大值,最大值为bc;
③△PF1F2的周长为2(a+c).
(5)若M(x0,y0)是椭圆+=1(a>b>0)的弦AB(AB不平行y轴)的中点,则有kAB·kOM=-.
椭圆仍然是2023年的必考点。椭圆的定义、标准方程、几何性质通常以小题形式考查,直线与椭圆的位置关系主要出现在解答题中.题型主要以选择题、填空题为主,一般为中档题,椭圆方程的求解经常出现在解答题的第一问.
(建议用时:40分钟)
一、单选题
1.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为
A. B. C. D.
2.已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为( )
A. B. C. D.
3.已知椭圆(a>b>0)的离心率为,则
A.a2=2b2 B.3a2=4b2 C.a=2b D.3a=4b
4.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为
A. B. C. D.
5.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为
A. B. C. D.
6.椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
7.已知椭圆:的一个焦点为,则的离心率为
A. B. C. D.
8.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. B. C. D.
9.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为
A. B. C. D.
10.已知,是椭圆:的两个焦点,点在上,则的最大值为( )
A.13 B.12 C.9 D.6
11.已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
A. B. C. D.
12.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为
A.+=1 B.+=1
C.+=1 D.+=1
二、填空题
13.在平面直角坐标系中,椭圆的中心为原点,焦点,在轴上,离心率为,过作直线交于两点,且的周长为,那么的方程为__________.
14.已知椭圆的中心在坐标原点,右焦点与圆的圆心重合,长轴长等于圆的直径,那么短轴长等于______.
15.设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.
16.已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
三、解答题
17.已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
18.已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共3页。试卷主要包含了公式法,几种数列求和的常用方法,已知数列的前n项和满足,若数列的通项公式是,则,数列{an}满足的前60项和为等内容,欢迎下载使用。
重难点27 抛物线—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点27 抛物线—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共4页。试卷主要包含了通径,焦半径公式等内容,欢迎下载使用。
重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共4页。试卷主要包含了双曲线的焦点到渐近线的距离为b,焦点三角形的面积等内容,欢迎下载使用。