终身会员
搜索
    上传资料 赚现金
    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版)
    立即下载
    加入资料篮
    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版)01
    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版)02
    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版)03
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版)

    展开
    这是一份2022届福建省福州市第十中学高三上学期第一次质量检查数学试题(解析版),共15页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022届福建省福州市第十中学高三上学期第一次质量检查数学试题

     

    一、单选题

    1.已知集合,则

    A B C D

    【答案】C

    【详解】依题意,所以

    故选:C.

    2.复数

    A B C D

    【答案】A

    【详解】试题分析:,故选A

    【解析】复数的运算

    3.设,则(    

    A B

    C D

    【答案】D

    【分析】应用对数的性质,比较对数式的大小.

    【详解】,而

    .

    故选:D.

    4是第四象限角,,,则   

    A B C D

    【答案】D

    【分析】根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.

    【详解】因为,由同角三角函数基本关系可得:

    解得:

    是第四象限角,所以.

    故选:D.

    【点睛】本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,属于常考题型.

    5.函数的大致图象是(    

    A B C D

    【答案】C

    【分析】比较函数的特征与选项中图像的特征即可得解.

    【详解】根据对数函数恒过点,函数恒过点,故A错误;

    根据对数函数的定义域,函数的定义域为,故B错误;

    根据复合函数的单调性,函数单调递减,故D错误.

    故选:C.

    【点睛】本题考查了函数图像的识别和对数函数的性质,属于基础题.

    6.已知分别为定义在上的奇函数和偶函数,则下列为奇函数的是(    

    A B C D

    【答案】C

    【分析】由函数奇偶性的性质和定义依次判断各选项即可.

    【详解】由题知分别为定义在上的奇函数和偶函数,

    故满足

    对于A,,为偶函数;

    对于B, ,则为偶函数;

    对于C,,则为奇函数;

    对于D,,则为偶函数.

    故选:C.

    7.设为正实数,则的最小值为(    

    A1 B2 C3 D4

    【答案】C

    【分析】变形为,利用基本不等式求最小值,注意检验等号成立的条件.

    【详解】解:因为为正实数,

    所以

    当且仅当,即时取等号,

    的最小值为3.

    故选:.

    8.已知函数,若,则实数的取值范围是(    

    A B

    C D

    【答案】B

    【分析】构造函数,可证得是奇函数,且在上单调递增. 可化为,进而可解得结果.

    【详解】,(),

    所以是奇函数;

    都是上增函数,

    所以上单调递增.

    所以可化为

    进而有

    所以

    解得.

    故选:B.

     

    二、多选题

    9.已知函数上是减函数,则下列表述正确的是(  )

    A

    B的单调递减区间为

    Ca的最大值是

    D的最小正周期为

    【答案】BCD

    【分析】由于函数上是减函数,从而可得,进而可求出取值范围,函数的周期和最值,从而可判断ACD,再利用余弦函数的性质求出单调区间,可判断B

    【详解】解:函数上是减函数,

    的最小值为a的最大值是的最小正周期为,故A错,CD正确;

    ,函数单调递减,所以B正确

    故选:BCD

    10.下列函数中是奇函数,且值域为的有(    

    A B

    C D

    【答案】AC

    【分析】根据奇函数的定义判断四个函数的奇偶性,并求出值域可得答案.

    【详解】对于A,因为,所以是奇函数,且值域为,故A正确;

    对于B,因为,所以为奇函数,但值域为,故B不正确;

    对于C,因为,所以为奇函数,且且值域为,故C正确;

    对于D,因为,所以为奇函数,但是值域为.故D不正确.

    故选:AC

    11.下列有关说法正确的是(    

    A的展开式中含项的二项式系数为20

    B.事件为必然事件,则事件AB是互为对立事件

    C.设随机变量服从正态分布,若,则

    D.甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件=“4个人去的景点各不相同,事件甲独自去一个景点,则

    【答案】CD

    【分析】A二项式定理写出展开式通项,即可确定项的二项式系数;B根据及对立事件的性质判断;C利用正态分布的性质、对称性判断;D求出,应用条件概率公式即可求.

    【详解】A:二项式展开式为,故时二项式系数为,错误;

    B为必然事件,则,仅当时事件AB是互为对立事件,错误;

    C:由服从正态分布,故,根据及正态分布的对称性知,正确;

    D:由题设,而,正确.

    故选:CD

    12.函数为定义在R上的偶函数,且在上单调递增,则下列结论正确的是(    

    A.函数为奇函数

    B.函数有且只有3个零点

    C.不等式的解集为

    D的解析式可能为

    【答案】BCD

    【解析】由奇偶性判断A,由偶函数性质和零点定义判断B,根据奇偶性与单调性结合解不等式判断C,利用导数确定函数的单调性判断D

    【详解】函数为定义在R上的偶函数,且在上单调递增,则上单调递减.

    ,则,则为偶函数,故A不正确.

    设函数R上有且只有2个零点,所以R上有且只有3个零点,故B正确.

    因为,所以当时,,则;当时,,又时,,故的解集为,故C正确.

    ,则此函数满足为偶函数,

    ,则R上的增函数,

    上,,所以此函数还满足在上单调递增,故D正确.

    故选:BCD

    【点睛】关键点点睛:本题主要考查函数的奇偶性与单调性.解题时主要利用奇偶性定义判断函数的奇偶性,由奇偶性的对称性得出函数的单调性,从而可解函数不等式.在函数较复杂时可利用导数确定单调性.

     

    三、填空题

    13.已知,那么______

    【答案】

    【分析】根据对数运算的定义,求解即可

    【详解】由题意

    解得

    故答案为:

    14.若, 则的值为___________

    【答案】1

    【分析】,则,令,则,从而可求出答案.

    【详解】解:由

    ,则

    ,则

    .

    故答案为:1.

    15.已知定义在上的函数上单调递减,且是偶函数,不等式对任意的恒成立,则实数的取值范围是____.

    【答案】

    【解析】根据函数是偶函数,得到关于直线对称;再由函数对称性,以及题中条件,得到对任意的恒成立,进而可得出结果.

    【详解】因为是偶函数,所以

    关于直线对称;

    又函数上单调递减,

    对任意的恒成立,

    可得对任意的恒成立,

    对任意的恒成立,

    时,

    因此只需,解得.

    故答案为:.

    【点睛】本题主要考查由函数奇偶性与单调性解不等式,属于常考题型.

     

    四、双空题

    16.已知函数,则=__________的零点个数为__________个.

    【答案】         

    【分析】本题第一空以分段函数为背景考查复合函数的求值问题,从内到外,依次将自变量的值代入对应解析式求值即可;第二空求函数的零点个数,可以转化为方程根的个数问题处理,也可以作出函数图象,判断其与轴的交点个数.

    【详解】解法一:

    ,即,解得,故的零点个数为2.

    故答案为:2.

    解法二:;作出函数的图象,如图

    显然函数的图象与轴有两个交点,故的零点个数为2.

    故答案为:2.

     

    五、解答题

    17.在锐角△ABC中,abc分别为角ABC所对的边,且

    (Ⅰ)确定角C的大小:

    )若c,△ABC的面积为,ab的值.

    【答案】(Ⅰ) 5

    【详解】试题分析:(1)先根据正弦定理边化角转化为即可得,故2,再由余弦定理可得

    试题解析:

    解:

    1)由正弦定理得

    是锐角,,故.

    2

    由余弦定理得

    点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长

     

    18.盒中装有6个零件,其中2个是使用过的,另外4个未经使用,

    (1)从盒中随机一次抽取3个零件,求抽取到的3个零件中恰有1个是使用过的概率;

    (2)从盒中每次随机抽取1个零件,观察后都将零件放回盒中,记3次抽取中抽到使用过的零件的次数为,求的分布列和数学期望.

    【答案】(1)

    (2)分布列见解析,1

     

    【分析】1)由古典概率的计算公式代入即可得出答案.

    2)依题有,由二项分布的概率计算公式即可求出的分布列,再由二项分布的期望公式即可求出的数学期望.

    【详解】(1)记事件A抽取到3个零件中恰有一个是使用过的

    .

    (2)依题有

    所以X的分布列如下

    X

    0

    1

    2

    3

    P

     

    所以X的期望是

    19.如图,在三角形中,已知D的三等分点(靠近点B),且.

    1)求的值;

    2)求三角形的面积.

    【答案】1;(2.

    【分析】1,分别利用正弦定理,并且结合,求得的值;(2)根据(1),并且结合三角恒等变换,最后根据三角形面积公式求解.

    【详解】1)在三角形中,由正弦定理得,

    在三角形中,由正弦定理得,

    ,故

    因为D的三等分点(靠点B),所以

    ①②得,.

    2)由(1)知,

    所以

    ,则

    (舍去)

    ,同理,得

    所以,三角形的面积

    .

    所以的面积为.

    【点睛】方法点睛:本题考查正余弦定理解三角形,属于基础题型,一般解三角形已知两角一边,首先用正弦定理解三角形,已知两边和其中一边的对角,求角用正弦定理解三角形,求边用余弦定理解三角形,已知两边和夹角,用余弦定理解三角形,已知三边,用余弦定理解三角形.

    20.为了了解空气质量指数(AQI)与参加户外健身运动的人数之间的关系,某校环保小组在暑假期间(60天)进行了一项统计活动:每天记录到体育公园参加户外健身运动的人数,并与当天值(从气象部门获取)构成60组成对数据,其中为当天参加户外健身运动的人数,为当天的值,并制作了如下散点图:

    连续60天参加健身运动人数与AQI散点图

    1)环保小组准备做yx的线性回归分析,算得yx的相关系数为,试分析yx的线性相关关系?

    2)环保小组还发现散点有分区聚集的特点,尝试作聚类分析.用直线将散点图分成I四个区域(如图),统计得到各区域的点数分别为5101035,并初步认定参加户外健身运动的人数不少于100值不大于100有关联,试分析该初步认定的犯错率是否小于

    附:

    0.050

    0.010

    0.001

    K

    3.841

    6.635

    10.828

     

     

    【答案】1)答案见解析;(2)该初步认定的犯错率小于

    【分析】1)由相关系数yx的线性相关关系以及线性相关性强弱;

    2)建立列联表,计算的值,对照附表得出结论.

    【详解】1yx的相关关系为负相关,

    ,故线性相关性不强,所以不建议继续做线性回归分析,

    得到回归方程,拟合效果也会不理想

    2)建立2×2列联表如下

     

    人数

    人数

    合计

    10

    5

    15

    10

    35

    45

    合计

    20

    40

    60

     

    代入公式计算得

    查表知,故犯错率在0.0010.01之间,

    所以该初步认定的犯错率小于

    21.已知函数

    1)当时,分别求函数取得最大值和最小值时的值;

    2)设的内角的对应边分别是,求的值,

    【答案】1时,取得最大值0时,取得最小值;(2

    【分析】(1)先利用二倍角公式及辅助角公式进行化简,然后结合正弦函数的性质可求;

    (2)已知先求A,然后结合余弦定理即可求解c.

    【详解】1

    ,即,得时,取得最大值0

    ,即,得时,取得最小值

    2

    由余弦定理A

    解得

    另解:

    由正弦定理,则

    时.,由勾股定理有

    时,,则

    综上,

    22.已知函数,其中

    1)讨论函数的单调区间;

    2)若函数有两个极值点,且,是否存在实数使得恒成立,如果存在请求出实数的取值范围,如果不存在请说明理由.

    【答案】1)答案见解析;(2)存在,.

    【分析】1)求导得,定义域为,令,然后结合二次函数的性质,分两类讨论(或0的大小关系即可得解.

    2)由(1)可知,;原问题等价于恒成立;而,于是构造函数,只需满足,于是再利用导数求出上的最小值即可.

    【详解】解:(1,定义域为

    所以

    ,对于方程

    时,的两个根

    ;在上,

    所以函数的单调增区间为

    单调减区间为

    时,恒成立,所以函数的单调增区间为,无减区间

    2)由(1)知,若有两个极值点,则

    的两个根,则

    所以:

    恒成立

    由(1)知,

    ,只要即可;

    ,令则,,令,则

    所以上单调递减;在上单调递增.

    所以存在,使得恒成立.

    【点睛】本题考查利用导数研究函数的单调性、恒成立问题,且要求熟练掌握二次函数的性质,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.

     

    相关试卷

    2022-2023学年福建省福州市福清港头中学高二下学期期末质量检查数学试题含答案: 这是一份2022-2023学年福建省福州市福清港头中学高二下学期期末质量检查数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024届福建省福州市高三上学期第一次质量检测数学试题含答案: 这是一份2024届福建省福州市高三上学期第一次质量检测数学试题含答案,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    福建省福州市2024届高三上学期第一次质量检测数学试题(附答案): 这是一份福建省福州市2024届高三上学期第一次质量检测数学试题(附答案),共18页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map