年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版)

    2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版)第1页
    2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版)第2页
    2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版)

    展开

    这是一份2021-2022学年上海市南汇中学高二下学期期末数学试题(解析版),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    2021-2022学年上海市南汇中学高二下学期期末数学试题 一、单选题1.要判断成对数据的线性相关程度的强弱,可以通过比较它们的样本相关系数r的大小,以下是四组数据的相关系数的值,则线性相关最强的是(    A   B  C   D  【答案】A【分析】利用相关系数的含义,判断每个选项里的相关系数的绝对值的大小即可.【详解】时,表明两个变量正相关;当时,表明两个变量负相关; ,且 越接近于1,相关程度越大;越接近于0,相关程度越小, 因此线性相关最强的是A,故选:A2.甲乙两位游客慕名来到东莞旅游,准备分别从东城黄旗山、虎门威远炮台、道滘粤晖园和长安莲花山4个景点中随机选择其中一个,记事件A:甲和乙选择的景点不同,事件B:甲和乙恰好一人选择虎门威远炮台,则条件概率=    A B C D【答案】D【分析】应用古典概型的概率求法求,再由条件概率公式求.【详解】由题设,所以.故选:D3.函数的导函数的图像如图所示,则下列说法正确的是(    A的极小值点为 B的极大值点为C有唯一的极小值 D.函数上的极值点的个数为【答案】D【分析】根据图象直接判断即可.【详解】由图像可知,的极小值点为,极大值点为,故AB选项错误;的极小值点,故C错误;由极值点的概念知函数上的极值点是,个数为2D正确;故选:D.4.在计算机语言中,有一种函数叫做取整函数(也叫高斯函数),它表示等于不超过的最大整数,如,已知,且),则A2 B5 C7 D8【答案】D【详解】分析:根据题意得到数列项,通过观察可得数列的周期性,然后根据周期性求值即可.详解:∵,且),同理可得即数列的周期为6.故选D.点睛本题考查数列周期性的判定和应用考查学生的应用意识和解决问题的能力,解题的关键是通过给出的新定义结合列举得到数列的周期,然后再利用周期求值 二、填空题5.设是等差数列的前项和,若,则_____【答案】【分析】根据等差数列的前项和公式求解.【详解】设等差数列的公差为所以.故答案为:.6.若函数在区间上的平均变化率为5,则______【答案】3【分析】利用函数平均变化率的计算公式计算.【详解】解:函数在区间上的平均变化率为解得.故答案为:3.7.用数学归纳法证明时,假设时成立,证明时也成立,可在左边乘以一个代数式______【答案】【分析】根据数学归纳法的定义求解.【详解】时,左边时,左边所以可在左边乘以一个代数式故答案为:.8.已知等比数列的前项和,则实数___________.【答案】【分析】由等比数列前n项和公式及已知条件,可得,即可求k.【详解】由题设,易知等比数列的公比为根据等比数列前n项和公式.故答案为:9.已知函数,则处的切线方程为________【答案】【分析】利用导数,写出切线方程公式,即可求解【详解】又因为,所以处的切线方程为故答案为:10.设甲乘汽车、火车前往目的地的概率分别为0.60.4,汽车和火车正点达到目的地的概率分别为0.90.8,则甲正点到达目的地的概率为___________.【答案】0.86【分析】分甲乘汽车和火车两类,分别利用独立事件的概率求解,然后再求和.【详解】当甲乘汽车时正点到达目的地的概率为当甲乘火车时正点到达目的地的概率为所以甲正点到达目的地的概率为故答案为:0.8611.在正项等比数列中,________【答案】【分析】先求出.再利用等比数列前项和的极限性质即可得出.【详解】设正项等比数列的公比为解得故答案为:【点睛】本题考查了等比数列的通项公式、等比数列前项和的极限性质,考查了推理能力与计算能力.12.设等差数列的公差不为零,的等比中项,则_____.【答案】4【分析】的等比中项,可以得到关于的关系式,从而求出.【详解】由题意可得,则(舍去).故答案为:4.【点睛】本题考查等差数列通项公式,等比数列的性质(等比中项),解题时要注意审题,仔细解答,是基础题13.在等差数列中,已知公差,且,则__________.【答案】145【分析】根据题意得到,再由等差数列性质得到,代入数据计算即可得到答案.【详解】等差数列中,已知公差 .故答案为:145.14.已知一个随机变量的分布为,若的等差中项,且,则______【答案】【分析】根据概率的性质、等差中项的性质,以及分布列的均值,方差运算公式求解.【详解】由题可知,所以.故答案为: .15.已知数列的通项公式为,数列的通项公式为为正整数,若数列中去掉的项后,余下的项组成数列,则_____【答案】【分析】根据等差等比数列的前项和公式求解即可.【详解】因为所以数列中前107项去掉的前7项后为数列的前100项,设数列的前项和为,数列的前项和为所以.故答案为:.16.已知函数是定义在上的奇函数,,则不等式的解集是_____________【答案】【详解】试题分析:,因为 ,所以,所以hx)在区间,因为,所以h1=0.hx>0,因为x>0,所以,得x>1等价于,因为函数是定义在上的奇函数,所以-1<x<0x>1.【解析】奇函数、导函数与单调性、不等式与函数图像的关系 三、解答题17.已知函数,且,求的导数.【答案】【分析】根据导数的运算法则求解.【详解】,.18.现有关于5组数据,如下表所示.123453026282318 (1)依据表中的统计数据,判断求出的线性相关系数(精确到(2)关于的经验回归方程,请预测当时,的值.附:线性相关系数【答案】(1)(2) 【分析】1)根据上表中的数据计算出相关系数即可求解;2)根据(1)中的数据计算出回归方程的系数得出回归方程,然后将代入回归方程即可求解.【详解】1)由表中数据可得所以. 所以2)由(1)知,所以所以y关于x的线性回归方程为:时,所以预测当时,y的值为14.2.19.设甲盒有3个白球,2个红球,乙盒有4个白球,1个红球,现从甲盒任取2球放入乙盒,再从乙盒任取两球.(1)记随机变量表示从甲盒取出的红球个数,求期望的值;(2)求从乙盒取出2个红球的概率.【答案】(1)(2) 【分析】1)根据超几何分布概率求解;(2)根据甲盒任取2球放入乙盒的不同情况,分类讨论,利用超几何分布概率模型求解.【详解】1)由题可知,随机变量可能的取值有所以分布列如下:012 所以.2(i),则此时甲盒取出来了2个白球放入乙盒,此时乙盒有6个白球,1个红球,所以从乙盒取出2个红球的概率为0(ii) ,则此时甲盒取出来了1个白球,1个红球放入乙盒,此时乙盒有5个白球,2个红球,所以从乙盒取出2个红球的概率为(iii) ,则此时甲盒取出来了2个红球放入乙盒,此时乙盒有4个白球,3个红球,所以从乙盒取出2个红球的概率为所以从乙盒取出2个红球的概率为.20.已知数列的前项和为,且为正整数.(1)证明:是等比数列;(2)取到最小值时,求的值.(参考数据:)【答案】(1)见解析(2)15 【分析】(1)利用的关系证明;(2)根据确定当为何值时,取到最小值.【详解】1)当时,因为,所以所以,所以时,解得所以是以为首项,为公比的等比数列,2)由(1)得所以,,即,即所以当单调递减,当单调递增,,所以当取到最小值时,的值为15.21.已知函数为实常数).(1),求证:上是增函数;(2)时,求函数上的最大值与最小值及相应的值;(3)若存在,使得成立,求实数的取值范围.【答案】(1)见解析(2)时,函数有最小值为时,函数有最大值为.(3) 【分析】(1)利用导数大于零即可证明;(2)利用导数讨论函数的单调性即可求解给定区间内的最值;(3)利用导数讨论单调性与最值,即可解决能成立问题.【详解】1)由题可知函数的定义域因为,所以,所以解得所以上是增函数.2)因为,所以,所以解得,令解得所以上单调递减,在上单调递增,所以上单调递减,在上单调递增,所以当时,函数有最小值为因为所以当时,函数有最大值为.3)由,即因为,所以,所以且当,所以恒成立,所以即存在时,,解得,解得所以单调递减,单调递增,所以所以时,恒成立,所以所以实数的取值范围是. 

    相关试卷

    2022-2023学年上海市南汇中学高一下学期期中数学试题含解析:

    这是一份2022-2023学年上海市南汇中学高一下学期期中数学试题含解析,共11页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    2021-2022学年上海市南汇中学高一上学期期中数学试题(解析版):

    这是一份2021-2022学年上海市南汇中学高一上学期期中数学试题(解析版),共11页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    2022-2023学年上海市南汇中学高一上学期期末数学试题(解析版):

    这是一份2022-2023学年上海市南汇中学高一上学期期末数学试题(解析版),共12页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map