所属成套资源:华师大版数学八年级下册课时练习 (含答案)
初中数学华师大版八年级下册第19章 矩形、菱形与正方形19.1 矩形2. 矩形的判定精品习题
展开
这是一份初中数学华师大版八年级下册第19章 矩形、菱形与正方形19.1 矩形2. 矩形的判定精品习题,共9页。试卷主要包含了对角线相等且互相平分的四边形是,下列命题中,假命题是,下列关于矩形的说法中正确的是等内容,欢迎下载使用。
华师大版数学八年级下册课时练习19.1.2《矩形的判定》一 、选择题1.对角线相等且互相平分的四边形是( )A.一般四边形 B.平行四边形 C.矩形 D.菱形2.在▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的条件是( )A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是( )A.正方形 B.矩形 C.菱形 D.都有可能4.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD5.下列命题中,假命题是( )A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE 7.下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分8.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )A.4≥x>2.4 B.4≥x≥2.4 C.4>x>2.4 D.4>x≥2.4二 、填空题9.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号) . 10.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为__________度时,四边形ABFE为矩形.11.如图,已知MN∥PQ,EF与MN、PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,交于B、D,则四边形ABCD是________.12.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为____度时,四边形ABFE为矩形.13.如图,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快________s后,四边形ABPQ成为矩形. 三 、解答题14.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形. 15.如图所示,在▱ABCD中,E为AD的中点,△CBE是等边三角形.求证:▱ABCD是矩形. 16.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形. 17.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证D是BC的中点;(2)如果AB=AC,试判断四边形AFBD是什么四边形,并证明你的结论. 18.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论. 19.如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG. 20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的角平分线于点E,交∠ACB的外角角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
答案1.C.2.A3.B.4.C.5.C.6.B.7.B.8.C.9.答案为:①④.10.答案为:60.11.答案为:矩形.12.答案为:60.13.答案为:4.14.证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.15.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=DC,∴∠D+∠A=180°,∵E是AD边的中点,∴AE=DE,∵△CBE是等边三角形,∴BE=CE,在△ABE和△DCE中,AB=DC;AE=DE;BE=CE,∴△ABE≌△DCE(SSS),∴∠A=∠D,∵∠D+∠A=90°,∴∠D=∠A=90°,∵四边形ABCD是平行四边形,∴▱ABCD是矩形.16.证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.17.证明:(1)∵AF∥BD,∴∠AFE=∠DCE.∵E是AD的中点,∴AE=DE. 又∵∠AEF=∠DEC,∴△AEF≌△DEC(AAS). ∴DC=AF. 又∵AF=BD,∴BD=DC.∴D是BC的中点. (2)四边形AFBD是矩形. 证明:∵AF=BD,AF∥BD, ∴四边形AFBD是平行四边形. ∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°. ∴四边形AFBD是矩形.18.证明:(1)∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.19.证明:(1)∵F为BE中点,AF=BF,∴AF=BF=EF,∴∠BAF=∠ABF,∠FAE=∠AEF,在△ABE中,∠BAF+∠ABF+∠FAE+∠AEF=180°,∴∠BAF+∠FAE=90°,又四边形ABCD为平行四边形,∴四边形ABCD为矩形.(2)解:连接EG,过点E作EH⊥BC,垂足为H,∵F为BE的中点,FG⊥BE,∴BG=GE,∵S△BFG=5,CD=4,∴S△BGE=10=0.5BGEH,∴BG=GE=5,在Rt△EGH中,GH=3,在Rt△BEH中,BE=4=BC,∴CG=BC﹣BG=4﹣5.20.证明:(1)∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO.∴OF=OC,同理可证:OC=OE,∴OE=OF.(2)由(1)知:OF=OC,OC=OE,∴∠OCF=∠OFC,∠OCE=∠OEC.∴∠OCF+∠OCE=∠OFC+∠OEC,而∠OCF+∠OCE+∠OFC+∠OEC=180°,∴∠ECF=∠OCF+∠OCE=90°,∴EF=13.∴OC=EF=6.5.(3)当点O移动到AC中点时,四边形AECF为矩形.理由:由(1)知OE=OF,当点O移动到AC中点时有OA=OC,∴四边形AECF为平行四边形.又∵∠ECF=90°,∴四边形AECF为矩形.
相关试卷
这是一份初中数学湘教版八年级下册2.5.2矩形的判定精品达标测试,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学第19章 矩形、菱形与正方形19.1 矩形2. 矩形的判定优秀课后测评,共2页。试卷主要包含了已知,求证等内容,欢迎下载使用。
这是一份初中数学湘教版八年级下册2.5.2矩形的判定精品复习练习题,共8页。