所属成套资源:2023陕西省西北工业大学附中高三上学期1月期末及答案(九科)
2023陕西省西北工业大学附中高三上学期1月期末数学(理)试题含答案
展开
这是一份2023陕西省西北工业大学附中高三上学期1月期末数学(理)试题含答案,共16页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
西工大附中2022-2023学年上学期1月期末高三理科数学一、选择题;本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则共轭复数在复平面对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设函数满足,且有,则( )A. B.C. D.3.设集合,则AB=A. B. C. D.4.“”是“不等式”的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.非充分必要条件5.若递增等比数列{an}的前n项和为Sn,a2=2,S3=7,则公比q等于A.2 B. C.2或 D.无法确定6.设函数的最小正周期为,则在上的零点之和为( )A. B. C. D.7.一个首项为,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是A. B. C. D.8.作用在同一物体上的两个力,当它们的夹角为时,则这两个力的合力大小为( )N.A.30 B.60 C.90 D.1209.设,,则等于A. B. C. D.10.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法种数为( )A. B.C. D.11.已知,是椭圆:的左、右焦点,点在椭圆上,与轴垂直,,则椭圆的离心率为A. B. C. D.12.已知数列满足,(且),数列的前n项和为Sn,则( )A. B.C. D.二、填空题:本题5小题,共20分。13.欧拉是科学史上最多才的一位杰出的数学家,他发明的公式为,i虚数单位,将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,这个公式也被誉为“数学中的天桥”根据此公式,的最大值为________.14.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,则角______.15.若点关于轴对称点为,则的一个取值为_____.16.曲线上某点处的切线与直线垂直,则该切线方程为________.三、解答题:全科免费下载公众号《高中僧课堂》本题6小题,共70分。17.某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示:(1)分别求甲乙两个小组成绩的平均数;(2)估计甲乙两个小组的成绩的方差大小关系;(3)甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在的概率.18.已知抛物线:的焦点为,点在抛物线上,且.(1)求抛物线的标准方程;(2)直线与抛物线交于,两点,若线段的中点为,求直线的方程.19.已知等差数列中,.(1)求的通项公式;(2)求的前项和的最大值.20.如图,在四棱锥,底面正方形,为侧棱的中点,为的中点,.(Ⅰ)求四棱锥体积; (Ⅱ)证明:平面;(Ⅲ)证明:平面平面.21.已知数列的首项为1,为数列的前项和,,其中,(1)求的通项公式;(2)证明:函数在内有且仅有一个零点(记为)且;22.已知抛物线的焦点到准线的距离为2,圆与轴相切,且圆心与抛物线的焦点重合.(1)求抛物线和圆的方程;(2)设为圆外一点,过点作圆的两条切线,分别交抛物线于两个不同的点和点.且,证明:点在一条定曲线上.23.已知函数,M为不等式的解集.(1)求M;(2)证明:当,.
参考答案1.C化简,求出,找到对应的坐标即可.对应的点的坐标为,在第三象限故选:C2.C根据题意,得到函数在上单调递增,且为定义在上的偶函数,结合函数的单调性与奇偶性,即可求解.由题意知,都有,可得函数在上单调递增,又由函数满足,可得是定义在上的偶函数,所以,所以,即,故选:C.3.D利用一元二次不等式的解法化简集合,由交集的定义可得结果.因为集合或,所以,,故选D.研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.4.A试题分析:解不等式得,则,而时,不成立.故“”是“不等式”的充分不必要条件.所以A选项是正确的.考点:解不等式;充要条件.5.A.由.得.解得2或.因为等比数列{an}为递增数列.所以.故选A.6.A由题意可知,可得,再令,可得在上的零点,由此即可求出结果.因为,所以.令,得,所以在上的零点为,,则所求零点之和为.故选:A.本题主要考查了函数 的性质的应用,属于基础题.7.C设等差数列的公差为,,又数列前六项均为正数,第七项起为负数,,,又数列是公差为整数的等差数列,,故选C.8.B用同一起点的向量表示,由向量加法的平行四边形法则计算.如图,,,,作平行四边形,则,因为,所以四边形是菱形,又,是等边三角形,.故选:B.9.B∵f(x)=2x+3,∴f(x-2)=2(x-2)+3=2x-1,即g(x)=2x-1,故选B.点睛:本题考查函数的表示方法,属于基础题目.求函数解析式的一般方法主要有:待定系数法,配凑法,换元法,构造方程组法,赋值法等.解决本题的关键是g(x)=f(x-2),即在f(x)=2x+3的解析式中,将自变量x都用x-2来替换,代入求出f(x-2)的解析式,即所求的g(x)的解析式.10.B分两步进行:先选出两名男选手,再从6名女生中选出2名且与已选好的男生配对.分两步进行:第一步,选出两名男选手,有种方法;第二步,从6名女生中选出2名且与已选好的男生配对,有种.故有种.故选:B.11.A在直角中,由得到a,b,c的等量关系,结合计算即可得到离心率.由已知,得,则,又在椭圆中,,故,即,解得e=,故选A本题考查椭圆简单的几何性质,考查椭圆离心率的求法,属于基础题.12.A由递推关系可得,由此可化简求出.因为(且),同除以,得,所以,,所以,即.故选:A.13.3由已知得,再利用余弦函数的值域即可求解.,又,即当时,取得最大值为3,故答案为:314.##由正弦定理与两角和的正弦公式化简由题意得,而,由正弦定理化简得,故,,得故答案为:15.(答案不唯一)先求出点关于轴对称的点坐标,与题干中所给的坐标对应相等,对其进行化简即可得到所满足的条件,从而得到的取值点关于轴对称的点坐标为,则由题可知,,即,,,所以,;同理,即,所以,则,则的一个取值可以为.故答案为:(答案不唯一)16.由可求得切点的横坐标,结合函数的解析式可得出切点的坐标,再利用点斜式可得出所求切线的方程.,该函数的定义域为,,直线的斜率为,故所求切线的斜率为,由,可得,,故切点为,所以,所求切线的方程为,即.故答案为:.17.(1)68;68;(2)估计甲成绩的方差大于乙成绩的方差;(3).(1)利用茎叶图中的数据直接求两个小组的平均数;(2)利用方差公式直接求解;(3)由茎叶图可知,甲组高于70分的同学共4名,有2 名在,记为,有2 名在,记为,任取两名同学,利用列举法能求出恰好有一名同学的得分在的概率解:(1)记甲乙两个小组成绩的平均数分别为,则,,所以甲乙两个小组成绩的平均数均为68,(2)记甲乙两个小组的成绩的方差分别为,则,,所以甲成绩的方差大于乙成绩的方差;(3)由茎叶图可知,甲组高于70分的同学共4名,有2 名在,记为,有2 名在,记为,任取两名同学的基本事件有6个:,恰好有一名同学的得分在的基本事件数共4个:,所以恰好有一名同学的得分在的概率为,此题考查茎叶图的应用,考查概率的求法,考查列举法等知识,考查运算能力,属于基础题18.(1)(2) (1)根据焦半径公式得,求得,即可求解方程;(2)由点差法化为,根据中点坐标可得直线斜率从而求出直线方程.(1)因为点在抛物线上,所以又因为,解得,故抛物线的标准方程为;(2)设,则,所以,化为又因为的中点为,所以,则 ,故直线的斜率为,所以直线的方程为整理得.19.(1);(2)90.(1)由已知条件利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出等差数列的通项公式;(2)利用公式求出前项和,利用二次函数图象求得最大值.解:(1)等差数列中,,,解得,,的通项公式.(2),,的前项和.当或时,前项和的最大值90.20.(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)证明见解析.(Ⅰ)利用锥体的体积公式即得;(Ⅱ)取中点,由题可得四边形为平行四边形,再利用线面平行的判定定理即得;(Ⅲ)由,得平面,由及面面垂直的判定定理即得.(Ⅰ)设四棱锥体积为,正方形的面积为,则.(Ⅱ)取中点,连结,因为、分别为、的中点,所以,所以,所以四边形为平行四边形,所以.又平面,平面,所以平面;(Ⅲ)∵底面正方形,平面,∴,又,,平面,平面,所以平面,平面, 所以.又,平面,平面,所以平面.由(Ⅱ)知,所以平面,而平面,所以平面平面.21.(1)(2)证明见解析(1)采用作差法即可求解;(2)由,求得(1),.再由导数判断出函数在,内单调递增,得到在,内有且仅有一个零点,由,得到;(1)①,②,①-②得,又当时,,故数列为等比数列,首项为1,公比为,;(2),可得,,在,内至少存在一个零点,又,在,内单调递增,在,内有且仅有一个零点,是的一个零点,,即,故;本题考查函数零点存在定理的应用,等比数列的前项和,利用导数研究函数的单调性,数学转化与化归等思想方法,属于中档题22.(1)抛物线的方程为,圆的方程为(2)证明见解析 (1)根据抛物线的焦点到准线的距离可得的值,即可得抛物线方程;根据圆的性质确定圆心与半径,即可得圆的方程;(2)根据直线与圆相切,切线与抛物线相交联立,结合韦达定理,即可得所满足的方程.(1)解:由题设得,所以抛物线的方程为.因此,抛物线的焦点为,即圆的圆心为由圆与轴相切,所以圆半径为,所以圆的方程为.(2)证明:由于,每条切线都与抛物线有两个不同的交点,则.故设过点且与圆相切的切线方程为,即.依题意得,整理得①;设直线的斜率分别为,则是方程①的两个实根,故,②,由得③,因为点,则④,⑤由②,④,⑤三式得:,即,则,即,所以点在圆.23.(1) (2)证明见解析(1)用分类讨论法去掉绝对值符号,化为分段函数,再解不等式.(2)用分析法证明.(1),时,,无解,同样时,,无解,只有时,满足不等式,∴; (2)要证,只需证,即证,即证,因为,所以,则,原不等式成立.本题考查解含绝对值的不等式,考查用分析法证明不等式.解含绝对值的不等式,一般都是按绝对值定义分类讨论去掉绝对值符号后再求解.
相关试卷
这是一份2023陕西省西北工业大学附中高一上学期1月期末数学试题含答案,共18页。
这是一份2023陕西省西北工业大学附中高二上学期1月期末考试数学试题含答案,共19页。
这是一份2023陕西省西北工业大学附中高三上学期1月期末数学(文)试题含答案,共22页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。