所属成套资源:最新备战中考数学第一轮复习分点透练真题(全国通用)
第十八讲 平行四边形与多边形-最新备战中考数学第一轮复习分点透练真题(全国通用)
展开
这是一份第十八讲 平行四边形与多边形-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第十八讲平行四边形与多边形解析版docx、第十八讲平行四边形与多边形原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
第十八讲 平行四边形与多边形
命题点1 平行四边形的判定
1.(2020•衡阳)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是( )
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
【答案】C
【解答】解:∵AB∥DC,AD∥BC,
∴四边形ABCD是平行四边形,故选项A中条件可以判定四边形ABCD是平行四边形;
∵AB=DC,AD=BC,
∴四边形ABCD是平行四边形,故选项B中条件可以判定四边形ABCD是平行四边形;
∵AB∥DC,AD=BC,则无法判断四边形ABCD是平行四边形,故选项C中的条件,不能判断四边形ABCD是平行四边形;
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,故选项D中条件可以判定四边形ABCD是平行四边形;
故选:C.
2.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )
A.甲、乙、丙都是 B.只有甲、乙才是
C.只有甲、丙才是 D.只有乙、丙才是
【答案】A
【解答】解:方案甲中,连接AC,如图所示:
∵四边形ABCD是平行四边形,O为BD的中点,
∴OB=OD,OA=OC,
∵BN=NO,OM=MD,
∴NO=OM,
∴四边形ANCM为平行四边形,方案甲正确;
方案乙中:
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN⊥BD,CM⊥BD,
∴AN∥CM,∠ANB=∠CMD,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(AAS),
∴AN=CM,
又∵AN∥CM,
∴四边形ANCM为平行四边形,方案乙正确;
方案丙中:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AB=CD,AB∥CD,
∴∠ABN=∠CDM,
∵AN平分∠BAD,CM平分∠BCD,
∴∠BAN=∠DCM,
在△ABN和△CDM中,
,
∴△ABN≌△CDM(ASA),
∴AN=CM,∠ANB=∠CMD,
∴∠ANM=∠CMN,
∴AN∥CM,
∴四边形ANCM为平行四边形,方案丙正确;
故选:A.
3.(2021•岳阳)如图,在四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为点E,F.
(1)请你只添加一个条件(不另加辅助线),使得四边形AECF为平行四边形,你添加的条件是 ;
(2)添加了条件后,证明四边形AECF为平行四边形.
【答案】(1)AE=CF (2)略
【解答】解:(1)添加条件为:AE=CF,
故答案为:AE=CF;
(2)证明:∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∵AE=CF,
∴四边形AECF为平行四边形.
4.(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.
(1)求证:四边形AECD是平行四边形;
(2)若AE平分∠BAC,BE=5,cosB=,求BF和AD的长.
【答案】(1) 略 (2)AD=EC=3
【解答】(1)证明:∵∠ACB=∠CAD=90°,
∴AD∥CE,
∵AE∥DC,
∴四边形AECD是平行四边形;
(2)解:∵EF⊥AB,
∴∠BFE=90°,
∵cosB==,BE=5,
∴BF=BE=×5=4,
∴EF===3,
∵AE平分∠BAC,EF⊥AB,∠ACE=90°,
∴EC=EF=3,
由(1)得:四边形AECD是平行四边形,
∴AD=EC=3.
5.(2021•聊城)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.
(1)求证:四边形AECD是平行四边形;
(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.
【答案】(1)略 (2)24
【解答】(1)证明:在△AOE和△COD中,
,
∴△AOE≌△COD(ASA),
∴OD=OE,
又∵AO=CO,
∴四边形AECD是平行四边形;
(2)解:∵AB=BC,AO=CO,
∴OB⊥AC,
∴平行四边形AECD是菱形,
∵AC=8,
∴CO=AC=4,
在Rt△COD中,由勾股定理得:OD===3,
∴DE=2OD=6,
∴菱形AECD的面积=AC×DE=×8×6=24.
命题点2 平行四边形性质的相关证明与计算
6.(2021•株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=( )
A.38° B.48° C.58° D.66°
【答案】B
【解答】解:∵∠DCE=132°,
∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,
∵四边形ABCD是平行四边形,
∴∠A=∠DCB=48°,
故选:B.
7.(2021•宜宾)下列说法正确的是( )
A.平行四边形是轴对称图形
B.平行四边形的邻边相等
C.平行四边形的对角线互相垂直
D.平行四边形的对角线互相平分
【答案】D
【解答】解:A、平行四边形不是轴对称图形而是中心对称图形,故原命题错误,不符合题意;
B、平行四边形的邻边不等,对边相等,故原命题错误,不符合题意;
C、平行四边形对角线互相平分,错误,故本选项不符合题意;
D、平行四边形对角线互相平分,正确,故本选项符合题意.
故选:D.
8.(2021•荆门)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )
A.55° B.65° C.75° D.85°
【答案】C
【解答】解:延长EH交AB于N,
∵△EFH是等腰直角三角形,
∴∠FHE=45°,
∴∠NHB=∠FHE=45°,
∵∠1=30°,
∴∠HNB=180°﹣∠1﹣∠NHB=105°,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2+∠HNB=180°,
∴∠2=75°,
故选:C.
9.(2020•益阳)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是( )
A.10 B.8 C.7 D.6
【答案】D
【解答】解:∵四边形ABCD是平行四边形,
∴OA=AC=3,OB=BD=4,
在△AOB中:4﹣3<AB<4+3,
即1<AB<7,
∴AB的长可能为6.
故选:D.
10.(2021•南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是( )
A.OE=OF B.AE=BF C.∠DOC=∠OCD D.∠CFE=∠DEF
【答案】A
【解答】解:∵▱ABCD的对角线AC,BD交于点O,
∴AO=CO,BO=DO,AD∥BC,
∴∠EAO=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF,AE=CF,∠CFE=∠AEF,
又∵∠DOC=∠BOA,
∴选项A成立,选项B、C、D不一定成立,
故选:A.
11.(2021•天津)如图,▱ABCD的顶点A,B,C的坐标分别是(0,1),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是( )
A.(﹣4,1) B.(4,﹣2) C.(4,1) D.(2,1)
【答案】C
【解答】解:∵B,C的坐标分别是(﹣2,﹣2),(2,﹣2),
∴BC=2﹣(﹣2)=2+2=4,
∵四边形ABCD是平行四边形,
∴AD=BC=4,
∵点A的坐标为(0,1),
∴点D的坐标为(4,1),
故选:C.
12.(2020•陕西)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为( )
A. B. C.3 D.2
【答案】D
【解答】解:如图,延长BF交CD的延长线于H,
∵四边形ABCD是平行四边形,
∴AB=CD=5,AB∥CD,
∴∠H=∠ABF,
∵EF∥AB,
∴EF∥CD,
∵E是边BC的中点,
∴EF是△BCH的中位线,
∴BF=FH,
∵∠BFC=90°,
∴CF⊥BF,
∴CF是BH的中垂线,
∴BC=CH=8,
∴DH=CH﹣CD=3,
在△ABF和△GHF中,
,
∴△ABF≌△GFH(ASA),
∴AB=GH=5,
∴DG=GH﹣DH=2,
故选:D.
13.(2021•贵阳)如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F,若AB=3,AD=4,则EF的长是( )
A.1 B.2 C.2.5 D.3
【答案】B
【解答】解:∵四边形ABCD是平行四边形,
∴AD∥CB,AB=CD=3,AD=BC=4,
∴∠DFC=∠FCB,
又∵CF平分∠BCD,
∴∠DCF=∠FCB,
∴∠DFC=∠DCF,
∴DF=DC=3,
同理可证:AE=AB=3,
∴AF=DE
∵AD=4,
∴AF=4﹣3=1,
∴EF=4﹣1﹣1=2.
故选:B.
14.如图,在平行四边形ABCD中,E是BD的中点,则下列四个结论:
①AM=CN;
②若MD=AM,∠A=90°,则BM=CM;
③若MD=2AM,则S△MNC=S△BNE;
④若AB=MN,则△MFN与△DFC全等.
其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【解答】解:①∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵E是BD的中点,
∴BE=DE,
在△MDE和△NBE中,
,
∴△MDE≌△NBE(ASA),
∴DM=BN,
∴AM=CN,
故①正确;
②若MD=AM,∠A=90°,
则平行四边形ABCD为矩形,
∴∠ADC=∠A=90°,
在△BAM和△CDM中,
,
∴△BAM≌△CDM(SAS),
∴BM=CM,
故②正确;
③过点M作MG⊥BC,交BC于G,过点E作EH⊥BC,交BC于H,
由①易得四边形MBND是平行四边形,E为BD中点,
∴MG=2EH,
又∵MD=2AM,BN=MD,AM=NC,
∴S△MNC=NC•MG=•BN•2EH=BN•EH=S△BNE,
故③正确;
④∵AB=MN,AB=DC,
∴MN=DC,
又∵AD∥BC,
∴四边形MNCD是等腰梯形或平行四边形,
如果四边形MNCD是等腰梯形,
∴∠MNC=∠DCN,
在△MNC和△DCN中,
,
∴△MNC≌△DCN(SAS),
∴∠NMC=∠CDN,
在△MFN和△DFC中,
,
∴△MFN≌△DFC(AAS),
如果是平行四边形,由平行四边形的性质可以得到△MFN≌△DFC,
故④正确.
∴正确的个数是4个,
故选:D.
15.(2021•湘潭)如图,在▱ABCD中,对角线AC,BD相交于点O,点E是边AB的中点.已知BC=10,则OE= .
【答案】5
【解答】解:在▱ABCD中,对角线AC,BD相交于点O,
∴点O是AC的中点,
∵点E是边AB的中点,
∴OE是△ABC的中位线,
∴OE=BC=5.
故答案为:5.
16.(2021•扬州)如图,在▱ABCD中,点E在AD上,且EC平分∠BED,若∠EBC=30°,BE=10,则▱ABCD的面积为 .
【答案】50
【解答】解:过点E作EF⊥BC,垂足为F,
∵∠EBC=30°,BE=10,
∴EF=BE=5,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DEC=∠BCE,
又EC平分∠BED,即∠BEC=∠DEC,
∴∠BCE=∠BEC,
∴BE=BC=10,
∴平行四边形ABCD的面积=BC×EF=10×5=50,
故答案为:50.
17.(2021•嘉兴)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .
【答案】
【解答】解:如图,
∵AB⊥AC,AB=2,BC=2,
∴AC==2,
在▱ABCD中,OA=OC,OB=OD,
∴OA=OC=,
在Rt△OAB中,
OB==,
又AH⊥BD,
∴OB•AH=OA•AB,即=,
解得AH=.
故答案为:.
18.(2021•青海)如图,在▱ABCD中,对角线BD=8cm,AE⊥BD,垂足为E,且AE=3cm,BC=4cm,则AD与BC之间的距离为 .
【答案】6cm
【解答】解:
∵四边形ABCD为平行四边形,
∴AB=CD,AD=BC,
在△ABD和△BCD中
∴△ABD≌△CDB(SSS),
∵AE⊥BD,AE=3cm,BD=8cm,
∴S△ABD=BD•AE=×8×3=12(cm2),
∴S四边形ABCD=2S△ABD=24cm2,
设AD与BC之间的距离为h,
∵BC=4cm,
∴S四边形ABCD=BC•h=4h,
∴4h=24,
解得h=6cm,
故答案为:6cm.
19.(2020•陕西)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.
【证明】略
【解答】证明:∵DE=DC,
∴∠DEC=∠C.
∵∠B=∠C,
∴∠B=∠DEC,
∴AB∥DE,
∵AD∥BC,
∴四边形ABED是平行四边形.
∴AD=BE.
20.(2021•桂林)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.
(1)求证:∠1=∠2;
(2)求证:△DOF≌△BOE.
【答案】(1)略 (2)略
【解答】证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠1=∠2;
(2)∵点O是BD的中点,
∴OD=OB,
在△DOF和△BOE中,
,
∴△DOF≌△BOE(AAS).
21.(2021•宿迁)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.
已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上, (填写序号).
求证:BE=DF.
【证明】略
【解答】解:选②,如图,连接BF,DE,
∵四边形ABCD是平行四边形,
∴BO=DO,
∵OE=OF,
∴四边形BEDF为平行四边形,
∴BE=DF.
故选择:②(答案不唯一).
22.(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、A、C、F在同一直线上,AE=CF.
求证:(1)△ADE≌△CBF;
(2)ED∥BF.
【证明】(1)证明 (2)证明
【解答】证明:(1)∵四边形ABCD为平行四边形,
∴DA=BC,DA∥BC,
∴∠DAC=∠BCA,
∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,
∴∠EAD=∠FCB,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)由(1)知,△ADE≌△CBF,
∴∠E=∠F,
∴ED∥BF.
命题点3 多边形及其性质
类型一 多边形的计算
23.(2021•云南)一个十边形的内角和等于( )
A.1800° B.1660° C.1440° D.1200°
【答案】C
【解答】解:根据多边形内角和公式得,
十边形的内角和等于:(10﹣2)×180°=8×180°=1440°,
故选:C.
24.(2021•北京)下列多边形中,内角和最大的是( )
A. B. C. D.
【答案】D
【解答】解:A.三角形的内角和为180°;
B.四边形的内角和为360°;
C.五边形的内角和为:(5﹣2)×180°=540°;
D.六边形的内角和为:(6﹣2)×180°=720°;
故选:D.
25.(2021•扬州)如图,点A、B、C、D、E在同一平面内,连接AB、BC、CD、DE、EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=( )
A.220° B.240° C.260° D.280°
【答案】D
【解答】解:连接BD,
∵∠BCD=100°,
∴∠CBD+∠CDB=180°﹣100°=80°,
∴∠A+∠ABC+∠E+∠CDE=360°﹣∠CBD﹣∠CDB=360°﹣80°=280°,
故选:D.
类型二 正多边形的性质及计算
26.(2020•百色)四边形的外角和等于( )
A.180° B.360° C.400° D.540°
【答案】B
【解答】解:∵多边形外角和等于360°,
∴四边形的外角和等于360°.
故选:B.
27.(2018•铜仁市)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
【答案】A
【解答】解:多边形的外角和是360°,根据题意得:
180°•(n﹣2)=3×360°
解得n=8.
故选:A.
28.(2021•连云港)正五边形的内角和是( )
A.360° B.540° C.720° D.900°
【答案】B
【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,
故选:B.
29.(2021•眉山)正八边形中,每个内角与每个外角的度数之比为( )
A.1:3 B.1:2 C.2:1 D.3:1
【答案】D
【解答】解:这个八边形的内角和为:
(8﹣2)×180°=1080°;
这个八边形的每个内角的度数为:
1080°÷8=135°;
这个八边形的每个外角的度数为:
360°÷8=45°;
∴这个八边形每个内角与每个外角的度数之比为:
135:45=3:1.
故选:D.
30.(2021•营口)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为( )
A.41° B.51° C.42° D.49°
【答案】A
【解答】解:方法一,如图,过点C作MC∥AB,则MC∥PH,
∵六边形ABCDEF是正六边形,
∴∠B=∠BCD=∠CDE=∠D=∠DEF==120°,
∵∠1=19°,
∴∠3=180°﹣∠1﹣∠B=41°,
∵MC∥AB,
∴∠BCM=∠3=41°,
∴∠MCD=∠BCD﹣∠BCM=79°,
∵MC∥PH,
∴∠PHD=∠MCD=79°,
四边形PHDE的内角和是360°,
∴∠2=360°﹣∠PHD﹣∠D﹣∠DEF=41°,
方法二,如图,延长BA交GE于点H,
∴∠GAH=∠1=19°,
∵六边形ABCDEF是正六边形,
∴其每个外角都相等,
∴∠AFH=∠FAH=60°,
∴∠AHF=180°﹣60°﹣60°=60°,
∴∠2=∠G=∠AHF﹣∠GAH=41°,
故选:A.
31.(2021•福建)如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于( )
A.108° B.120° C.126° D.132°
【答案】C
【解答】解:∵△ABF是等边三角形,
∴AF=BF,∠AFB=∠ABF=60°,
在正五边形ABCDE中,AB=BC,∠ABC=108°,
∴BF=BC,∠FBC=∠ABC﹣∠ABF=48°,
∴∠BFC==66°,
∴∠AFC=∠AFB+∠BFC=126°,
故选:C.
32.(2021•株洲)如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=( )
A.10° B.12° C.14° D.15°
【答案】B
【解答】解:在正六边形ABCDEF内,正五边形ABGHI中,∠FAB=120°,∠IAB=108°,
∴∠FAI=∠FAB﹣∠IAB=120°﹣108°=12°,
故选:B.
33.(2021•河北)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边形ABCDEF的值是( )
A.20 B.30
C.40 D.随点O位置而变化
【答案】B
【解答】解:设正六边形ABCDEF的边长为x,
过E作FD的垂线,垂足为M,连接AC,
∵∠FED=120°,FE=ED,
∴∠EFD=∠FDE,
∴∠EDF=(180°﹣∠FED)
=30°,
∵正六边形ABCDEF的每个角为120°.
∴∠CDF=120°﹣∠EDF=90°.
同理∠AFD=∠FAC=∠ACD=90°,
∴四边形AFDC为矩形,
∵S△AFO=FO×AF,
S△CDO=OD×CD,
在正六边形ABCDEF中,AF=CD,
∴S△AFO+S△CDO=FO×AF+OD×CD
=(FO+OD)×AF
=FD×AF
=10,
∴FD×AF=20,
DM=cos30°DE=x,
DF=2DM=x,
EM=sin30°DE=,
∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC
=AF×FD+2S△EFD
=x•x+2×x•x
=x2+x2
=x2
=(AF×FD)
=30,
故选:B.
34.(2021•丽水)一个多边形过顶点剪去一个角后,所得多边形的内角和为720°,则原多边形的边数是 .
【答案】6或7
【解答】解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,
解得:n=6.
∵多边形过顶点截去一个角后边数不变或减少1,
∴原多边形的边数为6或7,
故答案为:6或7.
35.(2021•衢州)如图,在正五边形ABCDE中,连结AC,BD交于点F,则∠AFB的度数为 .
【答案】72°
【解答】解:∵五边形ABCDE是正五边形,
∴∠BCD=∠ABC==108°,
∵BA=BC,
∴∠BAC=∠BCA=36°,
同理∠CBD=36°,
∴∠AFB=∠BCA+∠CBD=72°,
故答案为:72°.
36.(2021•湖州)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是 度.
【答案】36
【解答】解:如图,
∵正五角星中,五边形FGHMN是正五边形,
∴∠GFN=∠FNM==108°,
∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,
∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.
故答案为:36.
37.(2021•上海)六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积 .
【答案】
【解答】解:如图,∵△ABG≌△BCH,
∴AG=BH,
∵∠ABG=30°,
∴BG=2AG,
即BH+HG=2AG,
∴HG=AG=1,
∴中间正六边形的面积=6××12=,
故答案为:.
类型三 平面镶嵌
38.(2021•铜仁市)用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.工人师傅不能用下列哪种形状、大小完全相同的一种地砖在平整的地面上镶嵌( )
A.等边三角形 B.正方形 C.正五边形 D.正六边形
【答案】C
【解答】解:A选项,等边三角形的内角为60°,360°÷60°=6(个),所以6个等边三角形可以在一个顶点处实现内角之和等于360°,不符合题意;
B选项,正方形的内角为90°,360°÷90°=4(个),所以4个正方形可以在一个顶点处实现内角之和等于360°,不符合题意;
C选项,正五边形的内角为108°,360÷108°=3,所以正五边形不能在一个顶点处实现内角之和等于360°,符合题意;
D选项,正六边形的内角为120°,360°÷120°=3(个),所以3个正六边形可以在一个顶点处实现内角之和等于360°,不符合题意;
故选:C.
相关试卷
这是一份第十八讲 平行四边形与多边形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十八讲平行四边形与多边形解析版docx、第十八讲平行四边形与多边形原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份第二十讲 圆的基本性质-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份第十六讲 图形的相似-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。