![2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题(解析版)第1页](http://img-preview.51jiaoxi.com/3/3/13866967/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题(解析版)第2页](http://img-preview.51jiaoxi.com/3/3/13866967/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题(解析版)第3页](http://img-preview.51jiaoxi.com/3/3/13866967/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题(解析版)
展开
这是一份2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题(解析版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年陕西省西安市蓝田县高一上学期期末数学试题 一、单选题1.已知集合,,则( )A. B. C. D.【答案】B【分析】直接根据交集的概念即可得结果.【详解】因为,,所以,故选:B.2.已知圆与圆,则圆与的位置关系是( )A.内含 B.相交 C.外切 D.相离【答案】D【分析】根据两圆心距离与两半径关系确定两圆位置关系.【详解】圆的圆心为,半径,圆的圆心为,半径,因为,所以两圆相离,故选:D.3.下列说法中正确的是( )A.圆锥的轴截面一定是等边三角形B.用一个平面去截棱锥,一定会得到一个棱锥和一个棱台C.三棱柱的侧面可以是三角形D.棱锥的侧面和底面可以都是三角形【答案】D【分析】根据圆锥、棱锥、棱柱和棱台的结构与特征,逐一判断即可.【详解】对于A,圆锥的轴截面一定是等腰三角形,中有当母线等于底面直径时,轴截面才是等边三角形,故错误;对于B,只有用一个平行于底的平面去截棱锥,才一定会得到一个棱锥和一个棱台,故错误;对于C,由棱柱的定义可知,棱柱的侧面是平行四边形,故错误;对于D,棱锥为三棱锥时,侧面和底面都是三角形,故正确;故选:D.4.一个水平放置的平面四边形采用斜二侧画法得到的直观图是菱形,如图所示,则平面四边形的形状为( )A.正方形 B.长方形 C.菱形 D.梯形【答案】B【分析】直接将直观图进行还原即可得结果.【详解】将直观图还原得如图:所以平面四边形的形状为长方形,故选:B.5.函数的图象大致是( )A. B. C. D.【答案】A【详解】函数∴, 即函数为偶函数,其图象关于y轴对称,故排除BD 当时,,即函数图象过原点,故排除C ,本题选择A选项.6.两条直线与的距离为( )A. B. C. D.1【答案】D【分析】根据两平行线间的距离公式即可得解.【详解】直线即,所以与的距离为,故选:D.7.已知,,,则( )A. B. C. D.【答案】C【分析】根据指数函数的单调性和对数函数的单调性即可求解.【详解】因为,,所以,又因为,所以,故选:.8.在正方体中,P为的中点,则直线与所成的角为( )A. B. C. D.【答案】A【分析】连接,,,由正方体的性质可得为的中点且,即为异面直线与所成的角(或补角),再根据为等边三角形,即可得解;【详解】解:连接,,,由正方体的性质可得为的中点,由且,所以四边形为平行四边形,所以,所以即为异面直线与所成的角(或补角),显然,即为等边三角形,所以,即,故直线与所成的角为;故选:A9.某正方体被截去部分后剩余几何体的直观图如图所示,则该几何体的侧视图为( )A. B. C. D.【答案】B【分析】根据三视图的特点:长对正,高平齐,宽相等分析求解.【详解】由三视图的画法,可得侧视图如下:故选:B【点睛】本题主要考查三视图,还考查了空间想象的能力,属于基础题.10.若点为圆的弦的中点,则弦所在直线方程为( )A. B. C. D.【答案】A【分析】根据圆心和弦的中点的连线与弦所在的直线垂直,求出弦所在直线的斜率,再代入点斜式化为一般式即可.【详解】的圆心为,半径,因为为圆的弦的中点,所以圆心与点确定的直线斜率为,因为圆心和弦的中点的连线与弦所在的直线垂直,所以弦所在直线的斜率为,所以弦所在直线的方程为:,即.故选:A.11.设,是两条不同的直线,,是两个不同的平面,则下列说法正确的是( )A.若,,,则 B.若,,则C.若,,,则 D.若,,,则【答案】C【分析】根据线线,线面,面面的位置关系,即可判断选项.【详解】A. 若,,,则与相交,平行,故A错误;B. 若,,则或,故B错误;C. 若,,则,且,则,故C正确;D. 若,,,但没注明,所以与不一定垂直,故D错误.故选:C12.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为瞥臑.已知在瞥臑中,满足平面,且,,,则此瞥臑外接球的表面积为( )A. B. C. D.【答案】B【分析】由题意画出图形,然后补形为长方体,求出长方体的对角线长,即可得到外接球的半径,代入球的表面积公式得答案.【详解】由,,,∴,即有,又平面,所以,,两两互相垂直,该瞥臑如图所示: 图形可以补形为长方体,该瞥臑的外接球即该长方体的外接球,是长方体的体对角线,也是外接球的直径,设外接球半径为R,则,所以瞥臑的外接球表面积为.故选:B. 二、填空题13.在平面直角坐标系中,直线的倾斜角是___________.【答案】(或)【分析】先求出直线斜率,再求出直线倾斜角即可.【详解】设直线的倾斜角为(),将直线方程化为斜截式得:,∴该直线的斜率,∵,∴.故答案为:(或).14.已知直线过点,且在轴上的截距与在轴上的截距相等,则直线的方程是___________.【答案】或【分析】根据截距式方程的两种情况解决.【详解】当轴上的截距都为零时设的方程为,把点代入得,即,所以的方程为;当轴上的截距都不为零时,设截距都为,则的方程为,把点代入得,即,所以的方程为.故答案为:或15.已知直线,直线,若直线与的交点在第一象限,则实数的取值范围为___________.【答案】【分析】直接求出交点坐标,交点的纵横坐标都大于0,解不等式组即可.【详解】由题意得两直线不平行,即,得,由得,由于直线与的交点在第一象限,所以,解得,则实数的取值范围为,故答案为:.16.若函数满足,则称为满足“倒负”变换的函数,在下列函数中,所有满足“倒负”变换的函数序号是___________.①;②;③;④.【答案】④【分析】求得的解析式,再与的解析式进行比较即可得到满足“倒负”变换的函数【详解】①,不符合要求;②,不符合要求;③,不符合要求;④,符合要求故答案为:④ 三、解答题17.三角形ABC的三个顶点A(-3,0),B(2,1),C(-2,3),求:(1)BC边所在直线的方程;(2)BC边上高线AD所在直线的方程.【答案】(1)x+2y-4=0 (2)2x-y+6=0【分析】(1)直接根据两点式公式写出直线方程即可; (2)先根据直线的垂直关系求出高线的斜率,代入点斜式方程即可.【详解】(1)BC边所在直线的方程为:=,即x+2y-4=0;(2)∵BC的斜率K1=-,∴BC边上的高AD的斜率K=2,∴BC边上的高线AD所在直线的方程为:y=2(x+3),即2x-y+6=0.【点睛】此题考查了中点坐标公式以及利用两点式求直线方程的方法,属于基础题.18.已知圆,直线.(1)求圆的圆心坐标和半径;(2)若直线与圆相切,求实数的值.【答案】(1)圆心的坐标为,半径为2.(2) 【分析】(1)通过配方将圆的方程化为标准形式,即可得圆心和半径;(2)通过圆心到直线的距离等于半径列出方程解出即可.【详解】(1)圆,圆的标准方程为.圆的圆心的坐标为,半径为2.(2)直线与圆相切,圆心到直线的距离,解得.实数的值为.19.如图,是圆柱体的一条母线,为底面圆的直径,是圆上不与,重合的任意一点.(1)求证:平面;(2)若,,求三棱锥的体积.【答案】(1)证明见解析(2)80 【分析】(1)利用线面垂直判定定理即可证明平面;(2)先求得三棱锥的高,进而求得三棱锥的体积.【详解】(1)点在以为直径的圆上,.平面,平面,.又,平面,平面平面.(2)在中,,.由题意知平面,则为三棱锥的一个高.20.为实现“碳达峰”,减少污染,某化工企业开发了一个废料回收项目、经测算,该项目回收成本(元)与日回收量(吨)()的函数关系可表示为,且每回收1吨废料,转化成其他产品可收入80元.(1)设日纯收益为元,写出函数的解析式;(纯收益=收入-成本)(2)该公司每日回收废料多少吨时,获得纯收益最大?【答案】(1)(2)当公司每日回收废料吨时,获得纯收益最大为元. 【分析】(1)由题意求出收入,再根据纯收益=收入-成本即可求解.(2)根据分段函数解析式以及函数的单调性即可求解.【详解】(1)当时,每日收入为,每日回收成本为,则日纯收益,当时,每日收入为,每日回收成本为, 则日纯收益,故(2)当时,是单调递增函数,所以此时时在取最大值,,当时,,显然在时,取得最大值,此时,由,故当公司每日回收废料吨时,获得纯收益最大为元.21.如图,在四棱锥中,底面是平行四边形,、、分别为、、的中点.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,求出的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,.【分析】(1)先利用线线平行证明线面平行,再根据线面平行证明面面平行即可;(2)取中点,连接、,利用中位线定理,结合平行四边形性质证明四边形是平行四边形,即证,再根据线面平行的判定定理即证结果.【详解】(1)证明:∵是平行四边形,、、分别为、、的中点,∴,,又平面,平面,平面,平面,∴平面,平面,∵,且、平面,∴平面平面.(2)解:存在点是线段的中点,使得平面,且.证明如下:取中点,连接、,∵、、分别是、、的中点,∴,且,即,∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面,且.22.已知函数(,且).(1)求的定义域;(2)是否存在实数,使函数在区间上的最大值为?若存在,求出的值;若不存在,请说明理由.【答案】(1)(,且)(2)存在实数,使函数在区间上的最大值为. 【分析】(1)令求解即可;(2)根据的不同取值范围,对的单调性进行讨论,并求出区间的最大值,使其等于进行求解即可.【详解】(1)由题意可得,即(,且),∴的定义域为(,且).(2)∵(,且),∴设(,且),,当时,单调递减,假设存在实数,使函数在区间上的最大值为,①若,当时,函数单调递增,∴由复合函数的单调性可知,在区间单调递减,∴当时,取最大值,即函数的最大值为,∴,即,解得(舍)或,当时,,定义域为,,故满足题意;②若,当时,函数单调递减,∴由复合函数的单调性可知,在区间单调递增,∴当时,取最大值,即函数的最大值为,∴,即,,无解.综上所述,存在实数,使函数在区间上的最大值为.
相关试卷
这是一份2021-2022学年陕西省西安市高新第一中学高一上学期期末数学试题(解析版),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年陕西省西安市蓝田县高二上学期期末数学(文)试题(解析版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年陕西省西安市蓝田县高二上学期期末数学(理)试题(解析版),共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。