年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版)

    2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版)第1页
    2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版)第2页
    2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版)

    展开

    这是一份2022-2023学年安徽省怀宁县高一上学期数学期末综合复习测试卷(二)(解析版),共8页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    怀宁县高一第一学期数学综合复习测试卷(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合,则()A B C D2已知函数是幂函数,且在上是减函数,则实数m的值是().A2 B2 C D13已知,则().A B C D4如图是函数的部分图象,则的值分别为()ABCD5若不等式恒成立,则实数的取值范围是ABC D6已知函数,函数,若有两个零点,则m的取值范围是().A B C D7已知的定义域为,则的定义域为()A B C D8已知,则的值为()A B C D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9设函数是定义在上的奇函数,满足,当时,,则下列说法正确的是()A4是函数的周期B时,C函数的图象关于直线对称D函数的图象关于点对称10已知函数,则()AB在区间上只有1个零点C的最小正周期为D图象的一条对称轴11已知函数的图象关于直线对称,则()A函数的图象向右平移个单位长度得到函数的图象B函数为偶函数C函数上单调递增D,则的最小值为12函数部分图象如图所示,对不同x1x2[ab],若fx1)=fx2),有fx1+x2,则()Aa+bπ B C D                 II卷(非选择题)三、填空题:本题共4小题,每小题5.20分.13已知角是第四象限角,且满足,则________14,则的最小值为________.15函数)在上的最大值与最小值之和为,则的值为________________16若函数上单调递减,则的取值范围是_______四、解答题(70分)17已知定义在上的函数是增函数.1)若,求的取值范围;2)若函数是奇函数,且,解不等式.  18如图,在平面直角坐标系中,角的终边与单位圆交于点.1)若点的横坐标为,求的值.2)若将绕点逆时针旋转,得到角(),若,求的值.    19已知函数.1)求函数上的单调区间;2)若,求的值.20已知为锐角,1)求的值;2)求的值.       21已知函数1)求的最小正周期;2)求的单调递增区间;3)求图像的对称轴方程和对称中心的坐标.       22已知函数,将函数的图象向左平移个单位,得到函数的图象.1)求函数的解析式;2)若,求   答案及详解1D.故选:D.2C是幂函数,,解得2时,上是减函数,符合题意,时,上是增函数,不符合题意,.故选:C.3D因为,所以因为所以故选:D.4A由题意可得,即,解得:又函数图象的一个最高点为,即解得:,即时,综上可知:故选:A5B【解析】分析首先根据指数函数的性质,将不等式恒成立转化为恒成立,利用判别式从而求得实数的取值范围.详解不等式恒成立,即恒成立,即恒成立,所以解得所以实数的取值范围是故选B.6A存在两个零点,等价于的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.7B的定义域为,所以所以的定义域为,得,即所以的定义域为.故选:B.8D因为所以故选:D9ACD由函数是定义在上的奇函数及可得所以4是函数的周期,故A正确;时,所以,故B错误;为奇函数可得所以函数的图象关于直线对称,故C正确;易知,由可得所以,所以所以函数的图象关于点对称,故D正确.故选:ACD10AC.A:因为,所以,因此本选项说法正确;B:当时,时,即当时,,因此在区间上有2个零点,因此本选项说法不正确;C的最小正周期为:,因此本选项说法正确;D:当时,,显然不是最值,因此本选项说法不正确;故选:AC11BCD函数的图象关于直线对称,对于A,函数的图象向右平移个单位长度得到函数的图象,故错误;对于B,函数,根据余弦函数的奇偶性,可得,可得函数是偶函数,故正确;对于C,由于,函数上单调递增,故正确;对于D,因为又因为的周期为所以则的最小值为,故正确.故选:BCD.12BCD因为函数所以函数的周期为由函数的图象得,故B正确;由图象知A2,则fx)=2sin2x+φ),在区间[ab]中的对称轴为因为fx1+x2,且x1x2也关于对称,所以,即x1+x2a+b所以fa+b)=fx1+x2,故A错误,D正确,,则,所以,即所以,即所以,解得,又,所以,故C正确;故选:BCD13,即是第四象限角,.故答案为:.146当且仅当时取等号故答案为:615时,为单调减函数,所以,所以,且故成立,当时,则函数为增函数,所以,所以,此时故不成立,所以16,区间的中点为,所以由题意,属于该单调递减区间,因此,当时可得所在的单调区间为所以要使上单调递减,只需,并且解得,故的范围是故答案为:171;(2.1)由题意可得,求得的范围是.2函数是奇函数,且.不等式的解集为.18121在单位圆上,且点的横坐标为,则.2)由题知,则.191)递增区间为,递减区间为;(2.1)由题意得因为,所以,解得,解得,得.所以函数上的单调递增区间为单调递减区间为.2)由(1)知.因为,所以又因为,所以所以.201;(2.12)由为锐角,.211最小正周期.2)当时,时,函数单调递增,故函数的单调递增区间为.3,即,即则函数的对称轴方程为,对称中心为.221 根据图像平移变换可知:2,即解得:所以:时,时,综上可知, 
     

    相关试卷

    2022-2023学年安徽省安庆市怀宁县新安中学高一上学期期末数学试题(解析版):

    这是一份2022-2023学年安徽省安庆市怀宁县新安中学高一上学期期末数学试题(解析版),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年安徽省安庆市怀宁县新安中学高二上学期期末数学试题(解析版):

    这是一份2022-2023学年安徽省安庆市怀宁县新安中学高二上学期期末数学试题(解析版),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年北京市西城区高一上学期数学期末试题(解析版):

    这是一份2022-2023学年北京市西城区高一上学期数学期末试题(解析版),共13页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map