所属成套资源:高一数学下学期考点精讲+精练(人教A版2019必修第二册)
高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体优秀课时训练
展开
这是一份高中数学人教A版 (2019)必修 第二册9.2 用样本估计总体优秀课时训练,文件包含第02讲用样本估计总体-高一数学下学期考点精讲+精练人教A版2019必修第二册解析版docx、第02讲用样本估计总体-高一数学下学期考点精讲+精练人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
第2讲 用样本估计总体
知识点1 频率分布表与频率分布直方图
1、频率与频数
将一批数据按要求分为若干个小组,各个小组内数据的个数,叫做该组的频数;每组数据的频数除以全体数据的个数的商,叫做该组数据的频率. 频率反映各个小组数据在样本量中所占比例的大小.
2、样本的频率分布及频率分布表
根据随机抽取的样本量的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布.为了能直观的显示样本的频率分布情况,通常将样本量、样本中出现该事件的频数以及计算所得的相应频率列在一张表中,这张表叫做频率分布表. 分组、频数、频率是频率分布表中最基本也是必要的三列.在实际操作中,每组的频数是通过类似统计选票时的“唱票”的方式进行统计的,所以通常频率分布表中还会有“频数累计”一列.
注:①对频率分布表的理解:频率分布表给出了各个区间的频数和频率。由此可以估计这组数的分布情况,样本频率分布是总体分布的一种近似情况.
②样本的抽取必须是随机的:用样本频率分布来估计总体分布时,要使样本很好地反映总体的特征,必须随机抽取样本. 如果随机抽取另外一个样本量相同的样本,所形成的样本频率分布一般会与前一个样本频率分布有所不同,但是他们都可以近似的估计总体的分布.
3、频率分布直方图
为了将频率分布表中的结果直观形象地表现出来,常画出频率分布直方图. 画图时应以横轴表示分组,纵轴表示各组频率与组距的比值,以各个组距为底,以各频率除以组距的商为高,画成小长方形,这样得到的直方图就是频率分布直方图.
①绘制频率分布直方图的步骤
(1)计算极差,需要找出这组数的最大值和最小值,当数据很多时,可选一个数当参照.
(2)将一批数据分组,目的是要描述数据分布规律,要根据数据多少来确定分组数目,一般来说,数据越多,分组越多.
(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点.
(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.
(5)画频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.
注:①频数分布直方图的纵坐标是频数,每一组数对应的矩形的高度与频数成正比;频率分布直方图的纵坐标是,每一组数对应的矩形高度与频率成正比,而且每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为1.
②样本组数、组距与分点的确定:
(1)对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少都会影响我们了解数据的分布情况. 数据分组的组数与样本量有关,一般样本量越大,所分组数越多,当样本量不超过100时,按照数据的多少,通常分成5~12组,且根据组数=极差/组距来大致确定组数
(2)为了实际操作方便,组距的选择应结合极差尽量“取整”,例如极差约为1,组距可以选择0.1的整数倍,比如以0.1或0.2为组距;极差约为10,组距可以选择1的整数倍,比如以1或2为组距;极差约为100,组距可以选择10的整数倍,比如以10或20为组距.如果极差不利于分组,不能被组距整除,可以适当增加极差,如在左右两端各增加适当范围,并尽量使两端增加量相同
(3)分点的确定:若数据为整数,则分点数据减去0.5;若数据是小数点后有一位数字的数,则分点数据减去0.05,以此类推. 分组时,通常对组内数值所在的区间取左闭右开区间,最后一组取闭区间.
知识点2 统计图表
条形图、折线图及扇形图
(1)条形图:建立直角坐标系,用横轴(横轴上的数字)表示样本数据类型,用纵轴上的单位长度表示一定的数量,根据每个样本(或某个范围内的样本)的数量多少画出长短不同的等宽矩形,然后把这些矩形按照一定的顺序排列起来,这样一种表达和分析数据的统计图称为条形图.
优点:条形统计图不但可以直观的反映数据分布的大致情况,还可以清晰地表示出各个区间的具体数目,易于比较数据间的差别.
缺点:会损失数据的部分信息,且不能明确显示部分与整体的关系.
(2)折线图:建立直角坐标系,用横轴上的数字表示样本值,用纵轴上的单位长度表示一定的数量,根据样本值和数量的多少描出相应各点,然后把各点用线段顺次连接,得到一条折线,用这种折线表示出样本数据的情况,这样的一种表示和分析数据的统计图称为折线图.
优点:折线统计图不但可以表示数量的多少,还可以通过折线的起伏清楚直观地表示数量的增减变化情况.
缺点:折线统计图不能直观反映数据的分布情况,且不适合总体分布较多的情况
(3)扇形图:用一个圆表示总体,圆中各扇形分别代表总体中的不同部分,每个扇形的大小反映所表示的那部分占总体的百分比的大小,这样的一种表示和分析数据的统计图称为扇形图.
优点:扇形统计图可以很清楚的表示各部分与总体之间的关系,即扇形统计图能清楚地表示出各部分在总体中所占的百分比
缺点:会损失数据的部分信息,且不能明确显示部分与整体的关系.
知识点3 百分位数
(1)一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
(2)计算一组几个数据第p百分位数的步骤
第1步,按从小到大排列原始数据.
第2步,计算i=n×p%.
第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.
(3)四分位数
即把所有数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数.
其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等.
知识点4 总体集中趋势的估计
1.众数、中位数、平均数的理解
(1)一组数据中,某个数据出现的次数称为这个数据的频数,出现次数最多的数据称为这组数据的众数.
注:如果有几个数据出现的次数相同,并且比其他数据出现的次数都多,那么这几个数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数.
(2)如果一组数有奇数个数,且按照从小到大排列后为x1,x2,…,x2n+1,则称xn+1为这组数的中位数;如果一组数有偶数个数,且按照从小到大排列后为x1,x2,…,x2n,则称为这组数的中位数.
(3)如果给定的一组数是x1,x2,…,xn,则这组数的平均数为=(x1+x2+…+xn).
众数、中位数、平均数都是刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势.
2.众数、中位数、平均数的比较
名称
优点
缺点
众
数
①体现了样本数据的最大集中点;
②容易计算
①它只能表达样本数据中很少的一部分信息;
②无法客观地反映总体的特征
中
位
数
①不受少数几个极端数据(即排序靠前或靠后的数据)的影响;
②容易计算,便于利用中间数据的信息
对极端值不敏感
平
均
数
代表性较好,是反映数据集中趋势的量.一般情况下,可以反映出更多的关于样本数据全体的信息
任何一个数据的改变都会引起平均数的改变.数据越“离群”,对平均数的影响越大
知识点5 总体离散程度的估计
1、方差、标准差的定义
一组数据x1,x2,…,xn,用表示这组数据的平均数,则这组数据的方差为=(-),方差可用s2表示,标准差为.如果a,b为常数,则ax1+b,ax2+b,…,axn+b的方差为s2a2.
2、总体方差、总体标准差的定义
如果总体中所有个体的变量值分别为Y1,Y2,…,YN,总体平均数为,则称S2=
为总体方差,S=为总体标准差.如果总体的N个变量值中,不同的值共有k(k≤N)个,记为Y1,Y2,…,Yk,其中Yi出现的频数为fi(i=1,2,…,k),则总体方差为S2=.
3、样本方差、样本标准差的定义
如果一个样本中个体的变量值分别为y1,y2,…,yn,样本平均数为,则称
为样本方差,s=为样本标准差.
4、方差、标准差特征
(1)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.
(2)标准差、方差的取值范围:[0,+∞).
标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.
(3)标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.
(4)标准差的单位与样本数据一致.
考点一 绘制频率分布直方图
解题方略:
绘制频率分布直方图应注意的2个问题
(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率/组距”所占的比例来定高.如我们预先设定以“”为一个单位长度,代表“0.1”,则若一个组的为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.
(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.
【例1】从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8,其累计频率为0.4,则这个样本的容量是( )
A.20 B.40
C.70 D.80
【解析】由已知不超过70分的人数为8,累计频率为0.4,则这个样本量n==20.故选A.
变式1:将容量为100的样本数据,按由小到大排列分成8个小组,如下表所示:
组号
1
2
3
4
5
6
7
8
频数
10
13
14
14
15
13
12
9
第3组的频率和累积频率为( )
A.0.14和0.37 B.和
C.0.03和0.06 D.和
【解析】由表可知,第三小组的频率为=0.14,累积频率为=0.37.故选A.
变式2:一个容量为80的样本中,数据的最大值为152,最小值为60,组距为10,应将样本数据分为( )
A.10组 B.9组
C.8组 D.7组
【解析】由题意知,=9.2,故应分成10组.
变式3:某校高三(1)班共有40名学生,他们每天自主学习的时间全部在180分钟到330分钟之间,按他们学习时间的长短分5个组统计,得到如下频率分布表:
第一组
[180,210)
4
0.10
第二组
[210,240)
8
s
第三组
[240,270)
12
0.30
第四组
[270,300)
10
0.25
第五组
[300,330]
6
t
则分布表中s,t的值分别为________,________.
【解析】s==0.2,t=1-0.1-s-0.3-0.25=0.15.
答案:0.20 0.15
变式4:一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根据上面的数据列出频率分布表,绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35 cm之间的麦穗所占的百分比.
【解析】(1)计算极差:7.4-4.0=3.4.
(2)决定组距与组数:若取组距为0.3,因为≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12.
(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.
(4)列频率分布表:
分组
频数
频率
[3.95,4.25)
1
0.01
[4.25,4.55)
1
0.01
[4.55,4.85)
2
0.02
[4.85,5.15)
5
0.05
[5.15,5.45)
11
0.11
[5.45,5.75)
15
0.15
[5.75,6.05)
28
0.28
[6.05,6.35)
13
0.13
[6.35,6.65)
11
0.11
[6.65,6.95)
10
0.10
[6.95,7.25)
2
0.02
[7.25,7.55]
1
0.01
合计
100
1.00
(5)绘制频率分布直方图如图.
从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35 cm之间的麦穗约占41%.
变式5:某中学从高一年级随机抽取50名学生进行智力测验,其得分如下(单位:分):
48 64 52 86 71 48 64 41 86 79
71 68 82 84 68 64 62 68 81 57
90 52 74 73 56 78 47 66 55 64
56 88 69 40 73 97 68 56 67 59
70 52 79 44 55 69 62 58 32 58
根据上面的数据,回答下列问题:
(1)这次测验成绩的最高分和最低分分别是多少?
(2)将区间[30,100]平均分成7个小区间,试列出这50名学生智力测验成绩的频率分布表,进而画出频率分布直方图.
【解析】(1)这次测验成绩的最低分是32分,最高分是97分.
(2)根据题意,列出样本的频率分布表如下:
分组
频数
频率
[30,40)
1
0.02
[40,50)
6
0.12
[50,60)
12
0.24
[60,70)
14
0.28
[70,80)
9
0.18
[80,90)
6
0.12
[90,100]
2
0.04
合计
50
1.00
频率分布直方图如图所示.
考点二 频率分布直方图的应用
解题方略:
频率分布直方图的性质
(1)每个小矩形的面积表示样本数据落在该组内的频率.
(2)所有小矩形的面积和等于1.
(3)利用一组的频数和频率,可以求样本量.
【例2】如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为( )
A.20 B.30
C.40 D.50
【解析】样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.故选B.
变式1:某厂对一批产品进行抽样检测,如图是抽检产品净重(单位:克)的频率分布直方图,样本数据分组为[76,78),[78,80),…,[84,86].若这批产品有120个,估计其中净重大于或等于78克且小于84克的产品的个数是( )
A.12 B.18
C.25 D.90
【解析】净重大于或等于78克且小于84克的频率为(0.100+0.150+0.125)×2=0.75,所以在该范围内的产品个数为120×0.75=90.故选D.
变式2:如图是某班50名学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于( )
A.0.120 B.0.180
C.0.012 D.0.018
【解析】由图可知纵坐标表示频率/组距,故x=0.1-0.054-0.010-0.006×3=0.018.故选D.
变式3:某工厂对一批元件进行抽样检测.经检测,抽出的元件的长度(单位:mm)全部介于93至105之间.将抽出的元件的长度以2为组距分成6组:[93,95),[95,97),[97,99),[99,101),[101,103),[103,105],得到如图所示的频率分布直方图.若长度在[97,103)内的元件为合格品,根据频率分布直方图,估计这批元件的合格率是( )
A.80% B.90%
C.20% D.85.5%
【解析】由频率分布直方图可知元件长度在[97,103)内的频率为1-(0.027 5+0.027 5+0.045 0)×2=0.8,故这批元件的合格率为80%.故选A.
变式4:在样本的频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的 ,已知样本量是80,则该组的频数为( )
A.20 B.16
C.30 D.35
【解析】设该组的频数为x,则其他组的频数之和为4x,由样本量是80,得x+4x=80,解得x=16,即该组的频数为16.故选B.
变式5:从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:
组号
分组
频数
1
[0,2)
6
2
[2,4)
8
3
[4,6)
17
4
[6,8)
22
5
[8,10)
25
6
[10,12)
12
7
[12,14)
6
8
[14,16)
2
9
[16,18]
2
合计
100
(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.
【解析】(1)根据频数分布表知,100名学生中一周课外阅读时间不少于12小时的学生共有6+2+2=10(名),
所以样本中的学生一周课外阅读时间少于12小时的频率是1-=0.9.
故从该校随机选取一名学生,估计其该周课外阅读时间少于12小时的概率为0.9.
(2)课外阅读时间落在[4,6)组内的有17人,频率为0.17,所以a===0.085.
课外阅读时间落在[8,10)组内的有25人,频率为0.25,所以b===0.125.
(3)同一组中的每个数据用该组区间的中点值代替,则数据的平均数为:
1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时)
所以样本中的100名学生该周课外阅读时间的平均数在第4组.
变式6:某电子商务公司对10 000名网络购物者2019年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.
(1)直方图中的a=________;
(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________人.
【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.
(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.
因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000(人).
答案:(1)3 (2)6 000
考点三 统计图
【例3】某地农村2004年到2019年间人均居住面积的统计图如图所示,则增长最多的5年为( )
A.2004年~2009年 B.2009年~2014年
C.2014年~2019年 D.无法从图中看出
【解析】2004年~2009年的增长量为3.1,2009年~2014年的增长量为3.2,2014年~2019年的增长量为3.8.故选C.
变式1:甲、乙两个城市2019年4月中旬,每天的最高气温统计图如图所示,这9天里,气温比较稳定的城市是________.
【解析】从折线统计图中可以很清楚的看到乙城市的气温变化较大,而甲城市气温相对来说较稳定,变化基本不大.
答案:甲
变式2:观察下图所示的统计图,下列结论正确的是( )
A.甲校女生比乙校女生多
B.乙校男生比甲校男生少
C.乙校女生比甲校男生少
D.甲、乙两校女生人数无法比较
【解析】图中数据只是百分比,甲、乙两个学校的学生人数不知道,因此男生、女生的具体人数也无法得知.故选D.
变式3:如图是根据某中学为地震灾区捐款的情况而制作的统计图.已知该校在校学生3 000人,根据统计图计算该校共捐款________元.
【解析】根据统计图,得高一人数为3 000×32%=960(人),
捐款960×15=14 400(元);
高二人数为3 000×33%=990(人),捐款990×13=12 870(元);
高三人数为3 000×35%=1 050(人),捐款1 050×10=10 500(元).
所以该校学生共捐款14 400+12 870+10 500=37 770(元).
答案:37 770
考点四 总体百分位数的估计
解题方略:
总体百分位数估计需要注意的两个问题
(1)总体百分位估计的基础是样本百分位数的计算,因此计算准确是关键;
(2)由于样本量比较少,因此对总体的估计可能存在误差,因此对总体百分位数的估计一般是估计值而非精确值.
【例4】900,920,920,930,930的20%分位数是________.
【解析】因为5×20%=1,所以该组数据的20%分位数是=910.
变式1:5,6,7,8,9,10,11,12,13,14的25%分位数为________,75%分位数为________,90%分位数为________.
【解析】由于共有10个数字,则10×25%=2.5,10×75%=7.5,10×90%=9.故25%分位数为7,75%分位数为12,90%分位数为=13.5.
答案:7 12 13.5
变式2:为了解毕业生工作情况,某高校对12名应届毕业生起始月薪作了统计如下:
毕业生
起始月薪
毕业生
起始月薪
1
2
3
4
5
6
2 850
2 950
3 050
2 880
2 755
2 710
7
8
9
10
11
12
2 890
3 130
2 940
3 325
2 920
2 880
则第85百分位数是________.
【解析】首先对数据排序:2 710 2 755 2 850 2 880 2 880 2 890 2 920 2 940 2 950 3 050 3 130 3 325
所以i=12×85%=10.2.
即第85百分位数是3 130.
变式3:考察某校高二年级男生的身高,随机抽取40名高二男生,实测身高数据(单位:cm)如下:
171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 160 168 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161
请估计该校高二年级男生身高的第25,50,75百分位数.
【解析】把这40名男生的身高数据按从小到大排序,可得
151 156 157 157 158 159 160 160 161 161 162 163 163 163 163 164 164 165 165 166 166 167 167 167 168 168 168 168 168 168 169 169 169 170 171 171 174 174 176 180
由25%×40=10,50%×40=20,57%×40=30,可知样本数据的第25百分位数为161.5,第50百分位数为166,第75百分位数为168.5.
据此可估计该校高二男生身高的第25,50,75百分位数分别约为161.5,166和168.5.
考点五 众数、中位数、平均数的计算
解题方略:
平均数、众数、中位数的计算方法
平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.
【例5】下列说法中,不正确的是( )
A.数据2,4,6,8的中位数是4,6
B.数据1,2,2,3,4,4的众数是2,4
C.一组数据的平均数、众数、中位数有可能是同一个数据
D.8个数据的平均数为5,另3个数据的平均数为7,则这11个数据的平均数是
【解析】数据2,4,6,8的中位数为=5,显然A是错误的,B、C、D都是正确的.故选A.
变式1:抽样调查了某班30位女生所穿鞋子的尺码,数据如下(单位:码).在这组数据的平均数、中位数和众数中,鞋厂最感兴趣的是( )
码号
33
34
35
36
37
人数
7
6
15
1
1
A.平均数 B.中位数
C.众数 D.无法确定
【解析】由于众数是数据中出现最多的数,故鞋厂最感兴趣的是销售量最多的鞋号即这组数据的众数.故选C.
变式2:有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__________(填“众数”“中位数”或“平均数”).
【解析】因为7位获奖者的分数肯定是13名参赛选手中最高的,所以把13个不同的分数按从小到大排序,只要知道自己的分数和中位数就可以知道是否获奖了.
答案:中位数
【例6】某班50名学生的一次安全知识竞赛成绩分布如表所示:(满分10分)
成绩(分)
0
1
2
3
4
5
6
7
8
9
10
人数(人)
0
0
0
1
0
1
3
5
6
19
15
这次安全知识竞赛成绩的众数是( )
A.5分 B.6分
C.9分 D.10分
【解析】根据众数是一组数据中出现次数最多的进行判断,由表中数据可知成绩9分出现了19次,最多,所以众数是9分. 故选C.
变式1:某校举行“社会主义核心价值观”演讲比赛,学校对30名参赛选手的成绩进行了分组统计,结果如下表:
分数
x(分)
4≤x<5
5≤x<6
6≤x<7
7≤x<8
8≤x<9
9≤x<10
频数
2
6
8
5
5
4
由上可知,参赛选手分数的中位数所在的分数段为( )
A.5≤x<6 B.6≤x<7
C.7≤x<8 D.8≤x<9
【解析】共有30个数,中位数是第15,16个数的平均数,而第15,16个数所在分数段均为6≤x<7,所以参赛选手分数的中位数所在的分数段为6≤x<7.故选B.
变式2:假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表,从平均价格看,买得比较划算的是( )
价格/(元/kg)
12
10
8
合计/kg
小菲购买的数量/kg
2
2
2
6
小琳购买的数量/kg
1
2
3
6
A.一样划算 B.小菲划算
C.小琳划算 D.无法比较
【解析】 ∵小菲购买的平均价格是(12×2+10×2+8×2)÷6=10(元/kg),小琳购买的平均价格是(12×1+10×2+8×3)÷6=(元/kg),∴小琳划算.故选C.
变式3:某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是( )
A.13,13 B.13,13.5
C.13,14 D.16,13
【解析】 ∵这组数据中,13出现了10次,出现次数最多,∴众数为13,∵第15个数和第16个数都是14,∴中位数是14.故选C.
变式4:某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均数、众数、中位数分别是( )
A.85分,85分,85分 B.87分,85分,86分
C.87分,85分,85分 D.87分,85分,90分
【解析】由题意知,该学习小组共有10人,
因此众数和中位数都是85(分),
平均数为=87(分).故选C.
变式5:统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:
年龄(岁)
12
13
14
15
人数(个)
2
4
6
8
根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )
A.13,15,14 B.14,15,14
C.13.5,15,14 D.15,15,15
【解析】排球队员年龄的平均数
==14,故平均数是14,15出现了8次,出现的次数最多,故众数是15.从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14. 故选B.
变式6:某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):
甲群:13,13,14,15,15,15,15,16,17,17;
乙群:54,3,4,4,5,6,6,6,6,56.
(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?
(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?
【解析】(1)甲群市民年龄的平均数为
=15(岁),
中位数为15岁,众数为15岁.
平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.
(2)乙群市民年龄的平均数为
=15(岁),
中位数为6岁,众数为6岁.
由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.
变式6:如果5个数x1,x2,x3,x4,x5的平均数是7,那么x1+1,x2+1,x3+1,x4+1,x5+1这5个数的平均数是( )
A.5 B.6
C.7 D.8
【解析】选D 法一(定义法):依题意x1+x2+…+x5=35,所以(x1+1)+(x2+1)+…+(x5+1)=40,故所求平均数为=8.
法二(性质法):显然新数据(记为yi)与原有数据的关系为yi=xi+1(i=1,2,3,4,5),故新数据的平均数为+1=8.
变式7:某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为________件;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1 020小时,980小时,1 030小时,估计这个企业生产的产品的平均使用寿命为________小时.
【解析】由分层抽样可知,第一分厂应抽取100×50%=50(件).由样本的平均数估计总体的平均数,可知这批电子产品的平均使用寿命为1 020×50%+980×20%+1 030×30%=1 015(小时).
答案:50 1 015
考点六 总体集中趋势的估计
解题方略:
用频率分布直方图估计众数、中位数、平均数
(1)众数:取最高小长方形底边中点的横坐标作为众数.
(2)中位数:在频率分布直方图中,把频率分布直方图划分为左右两个面积相等的部分的分界线与x轴交点的横坐标称为中位数.
(3)平均数:平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.
【例7】某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)求这次测试数学成绩的众数、中位数、平均分;
(2)估计该校参加高二年级学业水平测试的学生的众数、中位数和平均数.
【解析】(1)①由题图知众数为=75.
②由题图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.
③由题图知这次数学成绩的平均分为:
×0.005×10+×0.015×10+×0.02×10+×0.03×10+×0.025×10+×0.005×10=72.
(2)由于数据是来自高二年级全部参加学业水平测试的学生的简单随机样本,所以可以估计高二年级参加学业水平测试的学生的众数是75,中位数是73.3,平均分是72.
变式1:为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量得到频率分布直方图如图,
则:(1)这20名工人中一天生产该产品的数量在[55,75)的人数是________;
(2)这20名工人中一天生产该产品的数量的中位数为________;
(3)这20名工人中一天生产该产品的数量的平均数为________.
【解析】(1)(0.04×10+0.025×10)×20=13.
(2)因为0.2+0.4>0.5,所以中位数一定在[55,65]之间,设中位数为x,则0.2+(x-55)×0.04=0.5,x=62.5.
(3)平均数为0.2×50+0.4×60+0.25×70+0.1×80+0.05×90=64.
答案:(1)13 (2)62.5 (3)64
变式2:某学校对100间学生公寓的卫生情况进行综合评比,考核分数分为A,B,C,D四个等级,其中分数在[60,70)内为D等级,分数在[70,80)内为C等级,分数在[80,90)内为B等级,分数在[90,100]内为A等级.考核评估后,得其频率分布折线图如图所示,估计这100间学生公寓评估得分的平均数是( )
A.80.25 B.80.45
C.80.5 D.80.65
【解析】由折线图可知,A等级分数在[90,100]内的频率为0.025×10=0.25,B等级分数在[80,90)内的频率为0.020×10=0.20,C等级分数在[70,80)内的频率为0.040×10=0.40,D等级分数在[60,70)内的频率为0.015×10=0.15,则其评估得分的平均数为65×0.15+75×0.40+85×0.20+95×0.25=80.5.故选C.
考点七 标准差、方差、极差的计算
解题方略:
计算标准差的5步骤
(1)求出样本数据的平均数.
(2)求出每个样本数据与样本平均数的差xi-(i=1,2,…,n).
(3)求出xi-(i=1,2,…,n)的平方值.
(4)求出上一步中n个平方值的平均数,即为样本方差.
(5)求出上一步中平均数的算术平方根,即为样本标准差.
【例8】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
【解析】甲的平均数是=6,中位数是6,极差是4,方差是=2;乙的平均数是=6,中位数是5,极差是4,方差是=,比较可得选项C正确.故选C.
变式1:某高三学生在连续五次月考中的数学成绩(单位:分)为:90,90,93,94,93,则该学生在这五次月考中数学成绩数据的平均数和方差分别为( )
A.92,2.8 B.92,2
C.93,2 D.93,2.8
【解析】该学生在这五次月考中数学成绩数据的平均数为=×(90+90+93+94+93)=92,
方差为s2=×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选A.
变式2:一农场在同一块稻田中种植一种水稻,其连续8年的产量(单位:kg)如下:450,430,460,440,450,440,470,460,则该组数据的方差为________.
【解析】根据题意知,该组数据的平均数为=×(450+430+460+440+450+440+470+460)=450,
所以该组数据的方差为s2=×[(450-450)2+(430-450)2+(460-450)2+(440-450)2+(450-450)2+(440-450)2+(470-450)2+(460-450)2]=150.
答案:150
变式3:某班20位女同学平均分为甲、乙两组,她们的劳动技术课考试成绩如下(单位:分):
甲组:60,90,85,75,65,70,80,90,95,80;
乙组:85,95,75,70,85,80,85,65,90,85.
试分别计算两组数据的极差、方差和标准差.
【解析】甲组:最高分为95分,最低分为60分,极差为95-60=35(分),
平均分为甲=×(60+90+85+75+65+70+80+90+95+80)=79(分),
方差为s=×[(60-79)2+(90-79)2+(85-79)2+(75-79)2+(65-79)2+(70-79)2+(80-79)2+(90-79)2+(95-79)2+(80-79)2]=119,
标准差为s甲= =≈10.91(分).
乙组:最高分为95分,最低分为65分,极差为95-65=30(分),
平均分为乙=×(85+95+75+70+85+80+85+65+90+85)=81.5(分),
方差为s=×[(85-81.5)2+(95-81.5)2+(75-81.5)2+(70-81.5)2+(85-81.5)2+(80-81.5)2+(85-81.5)2+(65-81.5)2+(90-81.5)2+(85-81.5)2]=75.25,
标准差为s乙= =≈8.67(分).
【例9】样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( )
A. B. C. D.2
【解析】由题可知样本的平均数为1,
所以=1,解得a=-1,
所以样本的方差为
s2=[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.故选D.
变式1:一组样本数据a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是( )
A.3 B.4
C.5 D.6
【解析】 x2-5x+4=0的两根为1,4,当a=1时,a,3,5,7的平均数是4;当a=4时,a,3,5,7的平均数不是1,所以a=1,b=4,s2=×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.
变式2:小明5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.
【解析】由题意可得x+y=20,(x-10)2+(y-10)2=8,
设x=10+t,y=10-t,则t2=4,|t|=2,故|x-y|=2|t|=4.
答案:4
变式3:已知一组正数x1,x2,x3,x4的方差s2=(x+x+x+x-16),则数据x1+2,x2+2,x3+2,x4+2的平均数为________.
【解析】设正数x1,x2,x3,x4的平均数为,则s2=[(x1-)2+(x2-)2+(x3-)2+(x4-)2],得s2=(x+x+x+x)-2,又已知s2=(x+x+x+x-16)=(x+x+x+x)-4,所以2=4,所以=2,故[(x1+2)+(x2+2)+(x3+2)+(x4+2)]=+2=4.
答案:4
变式4:已知总体的各个个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,21,且总体的中位数为10,若要使该总体的方差最小,则ab=________.
【解析】由题意得a+b=10×2=20,要使该总体的方差最小,方差化简后即满足(a-10)2+(b-10)2最小,故a=b=10,ab=100.
答案:100
考点八 总体离散程度的估计
解题方略:
研究两个样本的波动情况或比较它们的稳定性、可靠性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准,若平均数相等,则再比较两个样本方差的大小来作出判断.
【例10】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn的平均数
B.x1,x2,…,xn的标准差
C.x1,x2,…,xn的最大值
D.x1,x2,…,xn的中位数
【解析】标准差能反映一组数据的稳定程度.故选B.
变式1:北京市2017年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是( )
A.第一季度 B.第二季度
C.第三季度 D.第四季度
【解析】由图可知,第二季度的数据波动性最小,所以第二季度的PM2.5平均浓度指数方差最小.故选B.
【例11】研究两个样本的波动情况或比较它们的稳定性、可靠性等性能好坏的这类题,先求平均数,比较一下哪一个更接近标准,若平均数相等,则再比较两个样本方差的大小来作出判断.
甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:
甲:8,6,7,8,6,5,9,10,4,7;
乙:6,7,7,8,6,7,8,7,9,5.
(1)分别计算以上两组数据的平均数;
(2)分别求出两组数据的方差;
(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?
【解析】(1)甲=×(8+6+7+8+6+5+9+10+4+7)=7(环),
乙=×(6+7+7+8+6+7+8+7+9+5)=7(环).
(2)由方差公式s2=[(x1-)2+(x2-)2+…+(xn-)2],得s=3,s=1.2.
(3) 甲=乙,说明甲、乙两战士的平均水平相当.
又s>s,说明甲战士射击情况波动比乙大.
因此,乙战士比甲战士射击情况稳定.从成绩的稳定性考虑,应选择乙参加比赛.
变式1:甲、乙两机床同时加工直径为100 cm的零件,为检验质量,从中抽取6件,测量数据为:
甲:99 100 98 100 100 103
乙:99 100 102 99 100 100
(1)分别计算两组数据的平均数及方差;
(2)根据计算说明哪台机床加工零件的质量更稳定.
【解析】(1)甲=[99+100+98+100+100+103]=100,
乙=[99+100+102+99+100+100]=100,
s=[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=,
s=[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.
(2)由(1)知甲=乙,比较它们的方差,∵s>s,
故乙机床加工零件的质量更稳定.
练习一 绘制频率分布直方图
1、一个容量为32的样本,已知某组样本的频率为0.125,则该组样本的频数为( )
A.2 B.4
C.6 D.8
【解析】频率=,则频数=频率×样本量=0.125×32=4.
2、某班学生在一次数学考试中各分数段以及人数的成绩分布为:
[0,80),2人;[80,90),6人;[90,100),4人;[100,110),10人;[110,120),12人;[120,130),5人;[130,140),4人;[140,150],2人.那么分数在[100,130)中的频数以及频率分别为( )
A.27,0.56 B.20,0.56
C.27,0.60 D.13,0.29
【解析】由[100,130)中的人数为10+12+5=27(人),得频数为27,频率为=0.60.
3、某班50名同学参加数学测验,成绩的分组及各组的频数如下:
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图.
【解析】(1)频率分布表如下:
分组
频数
频率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
10
0.20
[70,80)
15
0.30
[80,90)
12
0.24
[90,100]
8
0.16
(2)频率分布直方图如下:
4、为了了解某片经济林的生长情况,随机测量其中的100棵树的底部周长,得到如下数据(单位:cm):
135
98
102
110
99
121
110
96
100
103
125
97
117
113
110
92
102
109
104
112
109
124
87
131
97
102
123
104
104
128
105
123
111
103
105
92
114
108
104
102
129
126
97
100
115
111
106
117
104
109
111
89
110
121
80
120
121
104
108
118
129
99
90
99
121
123
107
111
91
100
99
101
116
97
102
108
101
95
107
101
102
108
117
99
118
106
119
97
126
108
123
119
98
121
101
113
102
103
104
108
(1)列出频率分布表;
(2)画出频率分布直方图及频率折线图;
(3)估计该片经济林中底部周长小于100 cm的树占多少,底部周长不小于120 cm的树占多少.
【解析】(1)这组数据的最大的数为135,最小的数为80,最大的数与最小的数的差为55,可将该组数据分为11组,组距为5.
频率分布表如下:
底部周长分组
频数
频率
[80,85)
1
0.01
0.002
[85,90)
2
0.02
0.004
[90,95)
4
0.04
0.008
[95,100)
14
0.14
0.028
[100,105)
24
0.24
0.048
[105,110)
15
0.15
0.030
[110,115)
12
0.12
0.024
[115,120)
9
0.09
0.018
[120,125)
11
0.11
0.022
[125,130)
6
0.06
0.012
[130,135]
2
0.02
0.004
(2)频率分布直方图和频率折线图如下图所示.
(3)从频率分布表得,样本中底部周长小于100 cm的频率为0.01+0.02+0.04+0.14=0.21,样本中底部周长不小于120 cm的频率为0.11+0.06+0.02=0.19.所以估计该片经济林中底部周长小于100 cm的树占21%,底部周长不小于120 cm的树占19%.
练习二 频率分布直方图的应用
1、200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[50,60)内的汽车有( )
A.30辆
B.40辆
C.60辆
D.80辆
【解析】由直方图知,时速在[50,60)内的频率为0.03×10=0.3,故此段内汽车有200×0.3=60辆.
2、某车站在春运期间为了了解旅客购票情况,随机抽样调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min),下面是这次调查统计分析得到的频率分布表和频率分布直方图(如图所示).
分组
频数
频率
一组
0≤t
相关试卷
这是一份高中10.3 频率与概率精品精练,文件包含第06讲频率与概率-高一数学下学期考点精讲+精练人教A版2019必修第二册解析版docx、第06讲频率与概率-高一数学下学期考点精讲+精练人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册第九章 统计9.2 用样本估计总体优秀当堂达标检测题,文件包含第02练用样本估计总体-高一数学下学期考点精讲+精练人教A版2019必修第二册解析版docx、第02练用样本估计总体-高一数学下学期考点精讲+精练人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册第九章 统计9.1 随机抽样优秀课时训练,文件包含第01讲随机抽样-高一数学下学期考点精讲+精练人教A版2019必修第二册解析版docx、第01讲随机抽样-高一数学下学期考点精讲+精练人教A版2019必修第二册原卷版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。