北京市平谷区2022-2023学年七年级上学期期末考试数学
展开
这是一份北京市平谷区2022-2023学年七年级上学期期末考试数学,共10页。试卷主要包含了 单项式的系数和次数分别为, 下列方程变形中,正确的是,01,所得到的近似数为___., 3等内容,欢迎下载使用。
北京市平谷区2022~2023学年度第一学期期末检测 七年级数学试卷 2023.1(考试时间120分钟 满分100分)学校 班级 姓名 考号 考生须知1.本试卷共6页,共三道大题,28道小题.2.在试卷和答题卡上认真填写学校、班级、姓名、考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1下列各组数中,互为倒数的是 A. B C. D.2. 2022年我国夏粮生产喜获丰收,为稳定全年粮食生产奠定了良好的基础,为稳物价保民生、稳定经济大盘、应对外部环境的不确定性提供了坚实的支撑。据统计,2022年全国夏粮播种面积397950000亩,比上年增长了0.3%,两年实现增长. 将397950000用科学记数法表示应为A. B. C. D.3. 下列运算正确的是A. B.C. D.4. 如图,点 C,D 在线段 AB 上,若 AD=CB,则A. AC=CD B.AC=DB C. AD=2DB D. CD=CB5. 单项式的系数和次数分别为A.-3,2 B.-3,3 C.3,3 D.3,26. 下列方程变形中,正确的是A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得7. 你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线 B.线动成面C.面动成体 D.面与面相交的地方是线8. 如图是一组有规律的图案,它们是由边长相等的小正方形组成,其中部分小正方形涂有阴影,按照这样的规律,第n个图案中涂有阴影的小正方形为(用含有n的代数式表示) A.4+5(n-1) B.4+4nC.5+4(n-1) D.5+4n二、填空题(本题共16分,每小题2分)9.用四舍五入法把3,1415926精确到0.01,所得到的近似数为___.10.比较大小 ______ (填“>”,“<” 或“=”)11. 若∠α=15°35′,∠β=10°25′,则∠α+∠β= _____.12.若,,则a+b=_____13. 若代数式与是同类项,那么,14. 如图所示的网格是正方形网格,点 A,B,C,D,O 是网格线交点,那么∠AOB_____∠COD15. 一种商品每件成本为a元,按成本增加25%定价,售出60件,可盈利_____________元(用含a的式子表示).16.黑板上写着7个数,分别为:-8,a,1,13,b,0,-6,它们的和为-10,若每次从中任意擦除两个数,同时写上一个新数(新数为所擦除的两个数的和加上1),这样操作若干次,直至黑板上只剩下一个数,则所剩的这个数是____________.三、解答题(第17题20分,第18题10分,第19题6分,第20-21每小题5分,第22题6分,第23-24每小题5分,第25题6分,共68分)17.计算:(1) (2) (3) (4) . 18.解方程:. . 19.按要求画图,并回答问题: 如图,已知平面上四个点 A,B,C,D,请按要求回答下列问题:(1)画直线 AB,射线 BD,连接 AC; (2)取线段 AD 中点E;(3)请在直线AB上确定一点F,使点 F 到点 E 与点 C 的距离之和最短,并写出画图依据 (保留作图痕迹) . 20.已知 x=-1 是方程 2a+4x=x+5a 的解.(1)求 a 的值;(2)求关于 y 的方程 ay+6=6a+2y 的解. 21.先化简,再求值:已知 a-b=5,求 3(a2b+a-2b)-2(a2b+a)- (a2b-5b-1)的值. 22.按要求补全图形并证明.如图,∠AOB=150°,OC垂直OB,OD平分∠AOC,OE平分∠BOC(1)利用三角板依题意补全图形(2)求∠DOE的度数 23. 列方程解应用题: 某车间有88名工人生产甲、乙两种零件,每名工人每天平均能生产甲种零件 24个或乙种零件10 个. 已知 2 个甲种零件和 1个乙种零件配成一套,问应分配多少名工人生产甲种零件,多少名工人生产乙种零件,才能使每天生产的这两种零件刚好配套? 24.如图:数轴上点A,B表示的数分别是a,b,其中a>0,b<0. (1)当 a=4,b=-2 时,线段 AB 的中点对应的数是 ___________ .(2)若该数轴上另有一点C表示的数是 5,且 a>5,当 BC=2AC时,求2a+b+2023 的值. 25.如果两个方程的解相差k,且k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程 x 3 0的解是x=3,方程 x 1 0的解是x=1所以:方程 x 3 0 是方程 x 1 0 的“2—后移方程”.(1)判断方程2x-3 0 是否为方程2x -1 0 的k--后移方程 ________(填“是”或“否”);(2)若关于 x 的方程2x m n 0 是关于 x 的方程2x m 0 的“2—后移方程”,求m的值(3)当时,如果方程是方程的“3—后移方程”求代数式的值. 平谷区2022—2023学年度第一学期期末质量监控 初一数学参考答案及评分标准 2023.1一、选择题(本题共16分,每小题2分)题号12345678答案CCDBBCCC 二、填空题(9-16每题2分,本题共16分)9. 3.14 10. < 11. 12. 0 13. 2 , 3 14. > 15. 16. -4三、解答题(第17题20分,第18题10分,第19题6分,第20-21每小题5分,第22题6分,第23-24每小题5分,第25题6分,共68分)17.(1)解:=························································2分=························································3分=························································4分=························································5分(2)解: = ·······················································3分=- ·······················································4分= ·······················································5分(3).解: = ·······················································2分=- ·······················································4分= ·······················································5分(4)解: = ·······················································2分=- ·······················································4分= ·······················································5分18.(1)解:去括号,得 ················································2分移项,得 ·················································3分合并同类项,得 ············································4分系数化为1,得 ·············································5分(2)解: 去分母(方程两边同乘以6),得 .·······················································1分去括号,得.··············································2分移项,得 .···············································3分合并同类项,得 .··········································4分系数化为1,得 .···········································5分19. 图略 ························································5分(3)依据:两点之间线段最短·································6分20.(1)解: 把x=-1代入2a+4x=x+5a中2a-4=-1+5a·················································1分2a-5a=-1+4-3 a =3a =-1·····················································3分(2)把a =-1代入ay+6=6a+2y-y+6=-6+2y·········································4分y =4···············································5分21. 3(a2b+a-2b)-2(a2b+a)- (a2b-5b-1) =3 a2b+3a-6b-2a2b-2a- a2b+5b+1···································3分=a - b+1·························································4分 ∵a-b=5原式=5+1=6······················································5分22. 图略························································1分∵垂直∴ ·····························································2分∵∴······························································3分∵平分∴······························································4分∵平分∴······························································5分∴······························································6分23.解:设应分配x名工人生产甲种零件,(88-x)名工人生产乙种零件, 根据题意列方程,得 …………………………………… 1分 . ……………………………………….………3分 解得: ∴ 88-x=44 ………………………………………………5分答:.应分配40名工人生产甲种零件,44名工人生产乙种零件,才能使每天生产的这两种零件刚好配套.24. 解:(1)1………………………………………………….………1分(2)∵C表示的数是5∴BC=5-b AC=5-a……………………………………………….………3分 当BC=2AC时 5-b =2(5-a) 2a+b=15……………………………………………….……… 4分 把2a+b=15代入2a+b+2023原式=15+2023=2038……………………………………………….……… 5分25.解:(1)是…………………………………………………….……… 1分(2)解方程2x m n 0,……………………………………………….……… 2分解方程2x m 0,……………………………………………….……… 3分∵关于 x 的方程2x m n 0 是关于 x 的方程2x m 0 的“2—后移方程” ∴∴n=-4……………………………………………….……… 4分(3)解方程得解方程得∵方程是方程的“3—后移方程”∴∴……………………………………………….……… 5分 把c=3a+b代入6a+2b-2(c+3)原式=-6……………………………………………….……… 6分
相关试卷
这是一份北京市平谷区2023年七年级上学期期末考试数学试卷附答案,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年北京市平谷区七年级(下)期末数学试卷(含答案解析),共15页。试卷主要包含了54858×10−5B, 下列计算正确的是, 下列因式分解正确的是, 因式分解等内容,欢迎下载使用。
这是一份2022-2023学年度北京市平谷区中考一模数学试题+,文件包含北京市门头沟区中考一模数学试卷原卷版docx、北京市平谷区中考一模数学试题原卷版docx、北京市门头沟区中考一模数学试卷解析版docx、北京市平谷区中考一模数学试题解析版docx等4份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。