所属成套资源:2023年中考二轮集训20讲专题过关练习测试卷
2023年中考集训20讲专题02:M型平行线
展开
这是一份2023年中考集训20讲专题02:M型平行线,文件包含专题02M型平行线-老师版docx、专题02M型平行线-学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
专题02:M型平行线-2022年中考数学解题方法终极训练一、单选题1.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是( )A.α+β=180° B.α+β=90° C.β=3α D.α﹣β=90°【答案】D【解析】分析:过C作CF∥AB,根据平行于同一条直线的两条直线平行得到AB∥DE∥CF,根据平行线的性质得到作差即可.详解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴ ∴ 故选D.点睛:考查平行公理已经平行线的性质,注意辅助线的作法,作出辅助线是解题的关键.2.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为( )A.70° B.65° C.35° D.5°【答案】B【解析】作CF∥AB,根据平行线的性质可以得到∠1=∠BCF,∠FCE=∠2,从而可得∠BCE的度数,本题得以解决.【详解】作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.3.如图,已知点是矩形内一点(不含边界),设,,若,则( )A. B.C. D.【答案】A【解析】依据矩形的性质以及三角形内角和定理,可得,,两式相减即可得到.【详解】解:矩形,,,,中,,即,①中,,即,②由②①,可得,即,故选:A.【点评】本题主要考查了矩形的性质以及三角形内角和定理的运用,解决问题的关键是掌握:矩形的四个角都是直角.4.如图,,点在上,,,则下列结论正确的个数是( )(1);(2);(3);(4)A.1个 B.2个 C.3个 D.4个【答案】B【解析】利用平行线的性质和三角形的性质依次判断即可求解.【详解】解:∵AB∥CD,∴∠A+∠C=180°,又∵∠A=110°,∴∠C=70°,∴∠AED=∠C+∠D=85°,故(2)正确,∵∠C+∠D+∠CED=180°,∴∠D+∠CED=110°,∴∠A=∠CED+∠D,故(3)正确,∵点E在AC上的任意一点,∴AE无法判断等于CE,∠BED无法判断等于45°,故(1)、(4)错误,故选:B.【点评】本题考查了平行线的性质,三角形的外角的性质,掌握平行线的性质是本题的关键.5.如图,∠BCD=70°,AB∥DE,则∠α与∠β满足( )A.∠α+∠β=110° B.∠α+∠β=70° C.∠β﹣∠α=70° D.∠α+∠β=90°【答案】B【解析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点评】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.二、填空题6.如图,在中,,,.在上取一点,上取一点,连接,若,过点作,且点在的右侧,则的度数为__________.【答案】【解析】在中,由三边的长度可得出,进而可得出为直角三角形且,由于平行线之间有拐点,所以过点C作交AB于点M,则,利用平行的性质可得出的度数,结合可求出的度数,再利用“两直线平行,内错角相等”即可求出的度数.【详解】解:在中,,,,∵,即,∴为直角三角形且.过点C作交AB于点M,则,如下图所示,∵,,∴,∴.又∵,∴.故答案为:.【点评】本题考查了勾股定理的逆定理以及平行线的性质,利用勾股定理的逆定理,找出并知道过拐点作已知直线的平行线是解题的关键.7.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C分别落在直线a,b上,若∠1=22°,则∠2的度数是_____.【答案】38°【解析】过点B作BD∥a,可得∠ABD=∠1=22°,a∥b,可得BD∥b,进而可求∠2的度数.【详解】如图,过点B作BD∥a,∴∠ABD=∠1=22°,∵a∥b,∴BD∥b,∴∠2=∠DBC=∠ABC-∠ABD=60°-22°=38°.故答案为:38°.【点评】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.【答案】y=90°-x+z.【解析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG∥AB,DH∥EF,∵AB∥EF,∴AB∥CG∥HD∥EF,∴∠x=∠1,∠CDH=∠2,∠HDE=∠z∵∠BCD=90°∴∠1+∠2=90°,∠y=∠CDH+∠HDE=∠z+∠2,∵∠2=90°-∠1=90°-∠x,∴∠y=∠z+90°-∠x.即y=90°-x+z.【点评】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键.9.如图,已知ABCD,易得∠1+∠2+∠3=360°,∠1+∠2+∠3+∠4 =540°,根据以上的规律求∠1+∠2+∠3+…+∠n =__________ °.【答案】【解析】过点P作平行于AB的直线,运用两次两条直线平行,同旁内角互补即可得到三个角的和;分别过点P,Q作AB的平行线,运用三次平行线的性质,即可得到四个角的和;同样作辅助线,运用(n-1)次平行线的性质,则n个角的和是.【详解】解:(1)如图,过点P作一条直线PM平行于AB,∵AB∥CD,AB∥PM∵AB∥PM∥CD,∴∠1+∠APM=180°,∠MPC+∠3=180°,∴∠1+∠APC+∠3=360°;(2)如图,过点P、Q作PM、QN平行于AB,∵AB∥CD,∵AB∥PM∥QN∥CD,∴∠1+∠APM=180°,∠MPQ+∠PQN=180°,∠NQC+∠4=180°;∴∠1+∠APQ+∠PQC+∠4=540°;根据上述规律,显然作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到∠1+∠2+∠3+…+∠n =180°(n-1).故答案为:【点评】此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.10.如图,,平分,,,则__________.【答案】【解析】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∴∠DEF=∠BED,∵∠DEF+∠D=66°,∴∠BED+∠D=66°,∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点评】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED=∠B+∠D是解题的关键.三、解答题11.如图,AB//CD,点 为两平行线间的一点.请证明两个结论. (1);(2).【答案】(1)见解析;(2)见解析.【解析】(1)过点作,根据平行线的性质求证即可;(2)根据平行线的性质即可得证;【详解】(1)过点作,∵AB∥CD,∴AB∥EF∥CD, ,, . (2),,又∵∠BED=∠BEF+∠DEF,.【点评】本题考查了平行线的性质和平行公理的推论,熟练掌握平行线的性质是解题的关键.12.(1)已知:如图(a),直线.求证:;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?【答案】(1)见解析;(2)当点C在AB与ED之外时,,见解析【解析】(1)由题意首先过点C作CF∥AB,由直线AB∥ED,可得AB∥CF∥DE,然后由两直线平行,内错角相等,即可证得∠ABC+∠CDE=∠BCD;(2)根据题意首先由两直线平行,内错角相等,可得∠ABC=∠BFD,然后根据三角形外角的性质即可证得∠ABC-∠CDE=∠BCD.【详解】解:(1)证明:过点C 作CF∥AB,∵AB∥ED,∴AB∥ED∥CF,∴∠BCF=∠ABC,∠DCF=∠EDC,∴∠ABC+∠CDE=∠BCD;(2)结论:∠ABC-∠CDE=∠BCD,证明:如图:∵AB∥ED,∴∠ABC=∠BFD,在△DFC中,∠BFD=∠BCD+∠CDE,∴∠ABC=∠BCD+∠CDE,∴∠ABC-∠CDE=∠BCD.若点C在直线AB与DE之间,猜想,∵AB∥ED∥CF,∴∴.【点评】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质是解答本题的关键,注意掌握辅助线的作法.13.如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数. (1)请你按小明的思路,写出度数的求解过程;(2)如图3,,点在直线上运动,记,.①当点在线段上运动时,则与、之间有何数量关系?请说明理由;②若点不在线段上运动时,请直接写出与、之间的数量关系.【答案】(1)见解析;(2)①,见解析;②【解析】(1)过作,利用平行线的性质即可得出答案;(2)①过作,再利用平行线的性质即可得出答案;②分在延长线上和在延长线上两种情况进行讨论,结合平行线的性质即可得出答案【详解】解:(1)如图2,过作,,,,,,,,.(2)①、,理由:如图3,过作,,,,,;②、.如备用图1,当在延长线上时,; 理由:如备用图1,过作,,,,,;如备用图2所示,当在延长线上时,;理由:如备用图2,过P作,,,,,;综上所述,.【点评】本题考查的是平行线的性质,解题的关键是过作.14.已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)【答案】(1)见解析;(2)55°;(3)【解析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点评】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.15.如图1,点、分别在直线、上,,.(1)求证:;(提示:可延长交于点进行证明)(2)如图2,平分,平分,若,求与之间的数量关系;(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.【答案】(1)见解析;(2),见解析;(3)或.【解析】(1)根据平行线的判定与性质求证即可;(2)根据三角形的内角和为180°和平角定义得到,结合平行线的性质得到,再根据角平分线的定义证得,结合已知即可得出结论;(3)分当在直线下方和当在直线上方两种情况,根据平行线性质、三角形外角性质、角平分线定义求解即可.【详解】解:(1)如图1,延长交于点,∵,∴, ∴,∵,∴, ∴; (2)延长交于点,交于点,∵,,∴,∵,∴,∴, ∵平分,平分,∴,,∴,∵,,∴; (3)当在直线下方时,如图,设射线交于,∵,∴,∵平分,∴,∴,∵,,∴, ∵,,∴,即,解得:. 当在直线上方时,如图,同理可证得,则有,解得:.综上,故答案为或.【点评】本题考查平行线的判定与性质、角平分线的定义、三角形的外角性质、三角形的内角和定理、平角定义、角度的运算,熟练掌握相关知识的联系与运用是解答的关键.16.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系【答案】(1)65°;(2);(3)2n∠M+∠BED=360°【解析】(1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【详解】解:(1)如图1,作,,连结,,,,,,,,,,和的角平分线相交于,,,、分别是和的角平分线,,,,;(2)如图1,,,,,与两个角的角平分线相交于点,,,,,,;(3)由(2)结论可得,,,则.【点评】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.17.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是 ;因为AB∥CD,PH∥AB,所以PH∥CD,依据是 ;所以∠C=( ),所以∠APC=( )+( )=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.【答案】(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【解析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点评】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.18.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.【答案】(1)100;(2)75°;(3)n=3.【解析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.【详解】解:(1)如图:过O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分别延长AC、CD交GH于点E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)设FB交MN于K,∵,则;∴ ∵,∴,,在△FAK中,,∴, ∴.经检验:是原方程的根,且符合题意.【点评】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
相关试卷
这是一份2023年中考集训20讲专题03:笔尖型平行线,文件包含专题03笔尖型平行线-老师版docx、专题03笔尖型平行线-学生版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
这是一份2023年中考集训20讲专题19:隐圆型最值问题,文件包含专题19隐圆型最值问题-老师版docx、专题19隐圆型最值问题-学生版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份2023年中考集训20讲专题17:渐变累加型规律问题,文件包含专题17渐变累加型规律问题-老师版docx、专题17渐变累加型规律问题-学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。