2023届高考数学二轮复习第4讲创新情境与数学文化课件
展开第4讲 创新情境与数学文化
数学文化题是近几年全国卷中出现的新题型.预计在高考中,数学文化题仍会以选择题或填空题的形式考查,也不排除以解答题的形式考查,难度适中或容易.
自主先热身 真题定乾坤
核心拔头筹 考点巧突破
专题勇过关 能力巧提升
1.(2020·全国Ⅰ卷)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
2.(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块 B.3 474块C.3 402块 D.3 339块
【解析】 设第n环扇面形石板块数为an,第一层共有n环,则{an}是以9为首项,9为公差的等差数列,an=9+(n-1)×9=9n,设Sn为{an}的前n项和,则第一层、第二层、第三层的块数分别为Sn,S2n-Sn,S3n-S2n,因为下层比中层多729块,
3.(2020·全国Ⅱ卷)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i
5.(2019·全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
7.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有_____个面,其棱长为________.
【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18+8=26个面.如图,设该半正多面体的棱长为x,则AB=BE=x,延长CB与FE交于点G,延长BC交正方体棱于H,由半正多面体对称性可知,△BGE为等腰直角三角形,
1.创新型数学问题从形式上看很“新”,其提供的观察材料和需要思考的问题异于常规试题,需要考生具有灵活、创新的思维能力,善于进行发散性、求异性思考,寻找对材料内涵的解释和解决问题的办法.此类问题考查的内容都在考纲要求的范围之内,即使再新,也是在考生“力所能及”的范围内.只要拥有扎实的数学基础知识,以良好的心态坦然面对新情境,便可轻松破解!
2.数学文化题一般是从中华优秀传统文化中挖掘素材,将数学文化与高中数学知识有机结合,要求考生对试题所提供的数学文化信息材料进行整理和分析,在试题营造的数学文化氛围中,感受数学的思维方式,体验数学的理性精神.
1.设P,Q为两个非空实数集合,定义集合P⊗Q={z|z=a÷b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P⊗Q中元素的个数是( )A.2 B.3 C.4 D.5
2.定义一种运算“※”,对于任意n∈N*均满足以下运算性质:(1)2※2 019=1;(2)(2n+2)※2 019=(2n)※2 019+3.则2 020※2 019=________.【解析】设an=(2n)※2 019,则由运算性质(1)知a1=1,由运算性质(2)知an+1=an+3,即an+1-an=3.于是,数列{an}是等差数列,且首项为1,公差为3.故2 020※2 019=(2×1 010)※2 019=a1 010=1+1 009×3=3 028.
3.如果把四个面都是直角三角形的四面体称为“三节棍体”,那么从长方体八个顶点中任取四个顶点,则这四个顶点是“三节棍体”的四个顶点的概率为_____.
“新定义”试题是指给出一个未接触过的新规定、新概念,要求现学现用,其目的是考查阅读理解能力、应变能力和创新能力,培养学生自主学习、主动探究的品质.此类型问题可能以文字的形式出现,也可能以数学符号或数学表达式的形式出现,要求先准确理解“新定义”的特点,再加以灵活运用.特别提醒:“给什么,用什么”是应用“新定义”解题的基本思路.
1.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为( )A.135平方米 B.270平方米C.540平方米 D.1 080平方米
考点二 三角与传统文化
2.(2021·重庆市长寿中学校高三其他模拟)黄金分割比值是指将一条线段一分为二,较大部分与整体的比值等于较小部分与较大部分的比值.我们把满足上述分割的点称为该线段的黄金分割点,满足黄金分割比值的分割称为黄金分割.女生穿高跟鞋、空调温度的设置、埃菲尔铁塔的设计、很多国家国旗上的五角星都和黄金分割息息相关,也正是因为这个比值才让人类的设计产生了一种自然和谐美.已知连接正五边形的所有对角线能够形成国旗上的五角星,如图点D是线段AB的黄金分割点,由此推断cs 144°=( )
3.(2022·三明质检)我国古代数学家刘徽于公元263年在《九章算术注》中提出“割圆术”:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n边形逼近圆,算得圆周率的近似值记为πn,那么用圆的内接正2n边形逼近圆,算得圆周率的近似值π2n可表示成( )
4.(2020·沙坪坝区校级模拟)2020年新型冠状病毒性肺炎蔓延全国,作为主要战场的武汉,仅用了十余天就建成了“小汤山”模式的火神山医院和雷神山医院,再次体现了中国速度.随着疫情发展,某地也需要参照“小汤山”模式建设临时医院,其占地是由一个正方形和四个以正方形的边为底边、腰长为400 m的等腰三角形组成的图形(如图所示),为使占地面积最大,则等腰三角形的底角为( )
三角与传统文化主要包括“欧拉公式”“九章算术”“赵爽弦图”“割圆术”“三斜公式”“海伦公式”及以数学名人为背景数学知识的应用问题.
1.(2021·重庆巴蜀中学高三月考)在《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭”,蕴含了无限分割、等比数列的思想,体现了古人的智慧.如图,正方形ABCD的边长为4 cm,取正方形ABCD各边的中点E,F,G,H,作第二个正方形EFGH,然后再取正方形EFGH的各边的中点I,J,K,L,作第三个正方形IJKL,依此方法一直继续下去,记第一个正方形ABCD的面积为S1,第二个正方形EFGH的面积为S2,…,第k个正方形的面积为Sk,则前6个正方形的面积之和为( )
考点三 数列与传统文化
数列与传统文化主要把传统文化与等差数列、等比数列和数列通项等数列知识相结合分类研讨.
考点四 不等式与传统文化
2.(2020·中卫二模)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b和a的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a+b,宽为内接正方形的边长d.由刘徽构造的图形可以得到许多重要的结论,如图3.设D为斜边BC的中点,作直角三角形ABC的内接正方形对角线AE,过点A作AF⊥BC于点F,则下列推理正确的是( )
3.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为a,当a∈[2,2 019]时,符合条件的a共有( )A.133个 B.134个 C.135个 D.136个
【解析】 由题设a=3m+2=5n+3,m,n∈N*,则3m=5n+1.当m=5k,n不存在;当m=5k+1,n不存在;当m=5k+2,n=3k+1,满足题意;当m=5k+3,n不存在;当m=5k+4,n不存在;
不等式与传统文化主要包括在勾股弦图、勾股容方、均值不等式、伯努利不等式(Bernulli inequality)与导数等几个方面的应用.
考点五 立体几何与传统文化
3.(2021·湖南衡阳市八中高三其他模拟)阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家、物理学家,享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家.公元前212年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁.阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球(一个球与圆柱上下底面相切且与侧面相切)的图形,以纪念他在几何学上的卓越贡献,这个图形中的内切球的体积与圆柱体积之比为_____,内切球的表面积与圆柱的表面积之比为_____.
立体几何与传统文化主要包括立体几何中几何体体积公式、古代传统建筑中的阳马、鳖臑、堑堵、祖暅原理、牟合方盖等.
1.(2022·河南模拟)齐国的大将田忌很喜欢赛马,他与齐威王进行赛马比赛,他们都各有上、中、下等马各一匹,每次各出一匹马比一场,比赛完三场(每个人的三匹马都出场一次)后至少赢两场的获胜.已知同等次的马,齐威王的要强于田忌的,但是不同等次的马,都是上等强于中等,中等强于下等,如果两人随机出马,比赛结束田忌获胜的概率为( )
考点六 概率统计、算法与传统文化
【解析】 将齐威王的上、中、下等马分别记为A,B,C,田忌的上、中、下等马分别记为a,b,c则他们赛马的情况如下:
3.(2022·镜湖区校级模拟)由于发现新冠阳性感染者,2022年4月17日—23日芜湖市主城区实施静态管理,最终控制了疫情.初三、高三学生于27日返校复课,返校前需提供48小时核酸检测阴性证明.为配合核酸检测,我市从3名护士和2名医生中随机选取两位派往某社区检测点工作,则恰好选取一名医生和一名护士的概率为( )
4.(2021·湖南衡阳市八中高三模拟)俗话说:“一心不能二用”,意思是我们做事情要专心,那么,“一心”到底能否“二用”,某高二几个学生在学完《统计》后,做了一个研究,他们在本年级随机抽取男生和女生各100名,要求他们同时做一道数学题和英语听力题,然后将这些同学完成问题所用时间制成分布图如图,则下列说法正确的是( )
①男生“一心二用”所需平均时间平均值大于女生;②所有女生“一心二用”能力都强于男生;③女生用时众数小于男生;④男生“一心二用”能力分布近似于正态分布.A.①④ B.②③C.①③ D.①③④【答案】 D
【解析】 根据图形可看出,男生“一心二用”所需平均时间平均值大于女生;并不是所有女生“一心二用”能力都强于男生;女生用时众数小于男生;男生“一心二用”能力分布近似于正态分布;故①③④正确.故选D.
新教材适用2024版高考数学二轮总复习第3篇方法技巧引领必考小题练透第3讲创新情境与数学文化课件: 这是一份新教材适用2024版高考数学二轮总复习第3篇方法技巧引领必考小题练透第3讲创新情境与数学文化课件,共60页。PPT课件主要包含了考向速览,真题研究·悟高考,解题技法,解法和技巧,考法三数列,考法四平面向量,考法五空间几何,考法六函数与导数,ACD,考法七统计概率等内容,欢迎下载使用。
适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列培优拓展二数列中的情境创新与数学文化课件: 这是一份适用于新高考新教材2024版高考数学二轮复习上篇六大核心专题主攻专题2数列培优拓展二数列中的情境创新与数学文化课件,共19页。PPT课件主要包含了ABD,BCD等内容,欢迎下载使用。
高考数学二轮专题复习课件第3部分 深化1 第2讲 情境创新题(含解析): 这是一份高考数学二轮专题复习课件第3部分 深化1 第2讲 情境创新题(含解析),共24页。