- 8.6 空间直线、平面的垂直 练习 试卷 1 次下载
- 9.2 用样本估计总体 练习课件 试卷 1 次下载
- 9.3 统计案例 公司员工的肥胖情况调查分析 练习课件 试卷 1 次下载
- 10.1 随机事件与概率 练习 试卷 2 次下载
- 10.2 事件的相互独立性 练习 试卷 1 次下载
9.1 随机抽样
展开[A 基础达标]
1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5 000名居民的阅读时间的全体是( )
A.总体 B.个体
C.样本量 D.从总体中抽取的一个样本
解析:选A.根据题意,结合总体、样本、个体、样本量的定义可知,5 000名居民的阅读时间的全体是总体.
2.下列调查的样本合理的是( )
①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;
②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;
③到老年公寓进行调查,了解全市老年人的健康状况;
④为了了解全班同学每天的睡眠时间,在每个小组中各随机抽取3名学生进行调查.
A.①② B.②④
C.①④ D.③④
解析:选B.①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.
3.从一群玩游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为( )
A. B.k+m-n
C. D.不能估计
解析:选C.设参加游戏的小孩有x人,则=,x=.
4.(2019·河北省枣强中学期末考试)某中学高二年级共有学生2 400人,为了解他们的身体状况,用分层随机抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生为( )
A.1 260人 B.1 230人
C.1 200人 D.1 140人
解析:选D.设女生总人数为x人,由分层随机抽样的方法,可得抽取女生人数为80-42=38(人),所以=,解得x=1 140.故选D.
5.(2019·河北省石家庄市期末考试)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中取一个容量为36的样本,则老年人、中年人、青年人依次抽取的人数是( )
A.7,11,19 B.7,12,17
C.6,13,17 D.6,12,18
解析:选D.由题意,老年人27人,中年人54人,青年人81人的比例为1∶2∶3,所以抽取人数:
老年人:×36=6,
中年人:×36=12,
青年人:×36=18.
故选D.
6.为了考察某地6月份最高气温的情况,随机抽取了5天,所得数据约为29,29,31,30,31,则该地6月份最高气温的平均值约为 W.
解析:=30.
答案:30
7.(2019·四川省遂宁市期末考试)已知某地区中小学生人数如图所示,用分层随机抽样的方法抽取200名学生进行调查,则抽取的高中生人数为 W.
解析:用分层随机抽样的方法抽取200名学生进行调查,则抽取的高中生人数为200×=40.
答案:40
8.(2019·福建省三明市期末质量检测)某校为了解学生的身体素质情况,采用按年级分层随机抽样的方法,从高一、高二、高三学生中抽取一个300人的样本进行调查,已知高一、高二、高三学生人数之比为k∶5∶4,抽取的样本中高一学生为120人,则k的值为 W.
解析:由题意可得,=,解得k=6.
答案:6
9.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.
解:第一步:先确定艺人:(1)将30名内地艺人从1到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明的箱子中摇匀,从中抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.
第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.
10.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各岗位中的人数情况如下表所示:
| 管理 | 技术开发 | 营销 | 生产 | 合计 |
老年 | 40 | 40 | 40 | 80 | 200 |
中年 | 80 | 120 | 160 | 240 | 600 |
青年 | 40 | 160 | 280 | 720 | 1 200 |
合计 | 160 | 320 | 480 | 1 040 | 2 000 |
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个有25人参与的讨论单位发展与薪金调整方案的座谈会,则应怎样抽选出席人?
解:(1)用分层随机抽样法,并按老年职工4人,中年职工12人,青年职工24人抽取.
(2)用分层随机抽样法,并按管理岗位2人,技术开发岗位4人,营销岗位6人,生产岗位13人抽取.
[B 能力提升]
11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层随机抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
A.4 B.5
C.6 D.7
解析:选C.四类食品的种数比为4∶1∶3∶2,则抽取的植物油类的种数为20×=2,抽取的果蔬类的种数为20×=4,二者之和为6种,故选C.
12.(2019·湖南省张家界市期末)我国古代数学算经十书之一的《九章算术》中有一“衰分”问题“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣 人”.
解析:今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×=145(人).
答案:145
13.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作为样本.
若用分层随机抽样法,则应从40岁以下年龄段的职工中抽取 名.
解析:由题意知,40岁以下年龄段的职工人数为200×50%=100.若用分层随机抽样法,则应从40岁以下年龄段的职工中抽取×100=20(名).
答案:20
14.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人所占比例分别为a、b、c,
则有=47.5%,=10%,
解得b=50%,c=10%,
故a=100%-50%-10%=40%,
即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.
(2)游泳组中,
抽取的青年人人数为200××40%=60(人);
抽取的中年人人数为200××50%=75(人);
抽取的老年人人数为200××10%=15(人).
即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.
[C 拓展探究]
15.为了对某课题进行讨论研究,用分层随机抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
高校 | 相关人数 | 抽取人数 |
A | x | 1 |
B | 36 | y |
C | 54 | 3 |
(1)求x,y;
(2)若从高校B相关人员中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.
解:(1)分层随机抽样是按各层相关人数和抽取人数的比例进行的,所以有=⇒x=18,=⇒y=2.故x=18,y=2.
(2)总体和样本量较小,所以应采用抽签法,过程如下:
第一步,将36人随机编号,号码为1,2,3,…,36;
第二步,将号码分别写在相同的纸片上,揉成团,制成号签;
第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;
第四步,把与号码相对应的人抽出,即可得到所要的样本.
高中数学人教A版 (2019)必修 第二册9.1 随机抽样精练: 这是一份高中数学人教A版 (2019)必修 第二册<a href="/sx/tb_c4000309_t7/?tag_id=28" target="_blank">9.1 随机抽样精练</a>,共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
人教A版 (2019)必修 第二册9.1 随机抽样同步练习题: 这是一份人教A版 (2019)必修 第二册<a href="/sx/tb_c4000309_t7/?tag_id=28" target="_blank">9.1 随机抽样同步练习题</a>,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
高中数学人教A版 (2019)必修 第二册9.1 随机抽样随堂练习题: 这是一份高中数学人教A版 (2019)必修 第二册9.1 随机抽样随堂练习题,共34页。