北师大版七年级数学下册 4.1.2 三角形的边 教案
展开第四章 三角形
1 认识三角形
课时2 三角形的边
【知识与技能】
(1)结合具体实例,进一步认识三角形的概念及其基本要素,并能用符号语言表示三角形.
(2)利用边的相等关系能正确地给三角形分类.
(3)掌握三角形的三边关系,并能利用此关系判断已知的三条线段能否组成三角形.
【过程与方法】
在探索三角形三边关系的过程中,让学生经历测量三角形边长的实践活动,理解三角形三边间的不等关系.
【情感态度与价值观】
帮助学生树立几何知识源于客观实际的观念,用客观实际的观念激发学生的学习兴趣.
(1)对三角形的有关概念的了解,能用符号语言表示三角形.
(2)三角形的三边关系.
用三角形的三边关系判断已知三条线段能否组成三角形.
多媒体课件、三角形纸片om
出示投影(一些含有三角形的实际例子,比如金字塔、自行车等,如图11-1.1-1),首先让学生观察,然后教师进行引入:三角形是一种常见的几何图形,从古埃及的金字塔到现代的飞机、飞船,从宏大的建筑到微小的分子结构,处处都有三角形的影子.我们所研究的“三角形”这个课题来源于实际生活.本节我们将从认识三角形开始.(教师板书课题)
教师提问:通过观察刚才的图片,你们能得出三角形完整的概念吗?
探究1三角形的有关概念
教师出示一个三角形纸片,让学生观察,然后由教师直接给出三角形的概念.
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.
教师继续利用刚才的三角形纸片向学生直接指明相关的概念:
1.相邻两边的公共端点叫作三角形的顶点.
2.相邻两边组成的角叫作三角形的内角,简称三角形的角.
3.组成三角形的线段叫作三角形的边.
接着教师出示投影(△ABC),并提出问题:这个三角形该怎么用符号语言表示?它的内角、边又该怎么表示?学生独立思考,师生共同总结:图11-1.1-2“三角形”可用符号“△”表示,如图11-1.1-2,顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.∠A,∠B,∠C是△ABC的三个内角;△ABC的三边分别是AB,BC,CA,有时也可用小写字母来表示,顶点A,B,C所对的边分别可用a,b,c来表示,即边AB可用c表示,边BC可用a表示,边CA可用b表示.
教师安排学生完成教材P4练习第1题,并举手回答:
图中有几个三角形?用符号表示这些三角形.
解:5个.分别是△ABC,△BCD,△BCE,△ABE,△CDE.
教师讲评学生的回答,然后师生共同归纳、总结数三角形个数的方法(列举法):
(1) 按图形形成的过程去数(即重新画一遍图形,按照三角形形成的先后顺序去数)
(2)按三角形的大小顺序去数.
(3)从图中的某一条线段开始沿着一定的方向去数.
(4)先固定一个顶点,变换另两个顶点来数.
探究2:三角形的分类方法
教师布置学生自学,先让学生学习有关的概念,如等腰三角形、等边三角形等,然后通过小组进行讨论交流后完成下面的填空.
在这一过程中,教师要注意点拨分类的思想和原则.
探究3:三角形的三边关系
教师出示教材P3的探究,先让学生动手画一画,试一试,教师再引导学生讨论、分析,得到两条线路:
(1)由点B直接到点C,即BC;
(2)先由点B到点A,再由点A到点C,即BA+AC.
师生得到结论:线路(1)中的BC要短一些,即BC<BA+AC.
教师进一步提出问题:为什么BC要短一些?
学生举手回答:“两点之间,线段最短.”
然后师生共同归纳得出:
BC<AB+AC,①
AC<AB+BC,②
AB<BC+AC.③
即三角形两边的和大于第三边.(教师板书)
教师提问:由不等式①②③移项,你能得到怎样的不等式?通过这些不等式,你有什么发现呢?
学生回答,师生共同归纳:三角形两边的差小于第三边.(教师板书)
教师出示教材P3例题:
用一条长为18 cm的细绳围成一个等腰三角形.
(1)如果腰长是底边长的2倍,那么各边的长是多少?
(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?
师生共同分析后,教师板书规范的解答过程:
解:(1)设底边长为x cm,则腰长为2x cm.
由题意,得x+2x+2x=18,解得x=3.6.
所以,三边长分别为3.6 cm,7.2 cm,7.2 cm.
(2)因为长为4 cm的边可能是腰,也可能是底边,所以需要分情况讨论.
若4 cm长的边为底边,设腰长为x cm,则
4+2x=18,解得x=7.
若4 cm长的边为腰,设底边长为x cm,则
2×4+x=18,解得x=10.
因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4 cm的等腰三角形.
由以上讨论可知,可以围成底边长是4 cm的等腰三角形.
教师总结三角形三边关系的作用:(1)已知三角形的两边长,求第三边长的取值范围.(2)判断三条线段能否组成三角形.(3)利用三角形的三边关系解决含绝对值符号的化简问题.
最后让学生独立完成教材P4练习第2题,学生举手口答.
1.三角形的相关概念以及表示方法.
2.三角形按边分类.
3.三角形的三边关系.
【正式作业】教材P8习题11.1第1,2,7题