七年级数学下册考点精练专题01 相交线交点个数和分割平面问题
展开
这是一份七年级数学下册考点精练专题01 相交线交点个数和分割平面问题,共27页。
专题01 相交线交点个数和分割平面问题
【模型讲解】观察表格:
1条直线
0个交点
平面分成(1+1)块
2条直线
1个交点
平面分成(1+1+2)块
3条直线
(1+2)个交点
平面分成(1+1+2+3)块
4条直线
(1+2+3)个交点
平面分成(1+1+2+3+4)块
根据表格中的规律解答问题:
(1)5条直线两两相交,有 个交点,平面被分成 块;
(2)n条直线两两相交,有 个交点,平面被分成 块;
(3)应用发现的规律解决问题:一张圆饼切10刀(不许重叠),最多可得到 块饼.
【分析】(1)总结规律,根据规律求解;
(2)根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:n(n﹣1);n条直线两两相交,平面被分成1+n(n+1)块;
(3)根据(2)的结论解答即可.
解:(1)5条直线两两相交,有10个交点,平面被分成16块;
故答案为:10,16;
(2)2条直线相交有1个交点; 3条直线相交有1+2=3个交点;
4条直线相交有1+2+3=6个交点; 5条直线相交有1+2+3+4=10个交点;
6条直线相交有1+2+3+4+5=15个交点;…n条直线相交有1+2+3+4+…+(n﹣1)=n(n﹣1);
平面被分成1+1+2+3+4+…+(n+1)=1+n(n+1);
故答案为:n(n﹣1);1+n(n+1);
(3)当n=10时,(块),
【模型演练】
1.,,为同一平面内的任意三条直线,那么它们的交点可能有( )个.
A.,或 B.,,或 C.或 D.以上都不对
2.2条直线相交,有1个交点;3条直线相交,最多有3个交点;n条直线相交最多有多少个交点?( )
A. B. C. D.
3.平面内两两相交的7条直线,其交点个数最少是m个,最多是n个,则m+n的值为( )
A.18 B.20 C.22 D.24
4.在平面中,两条直线最多只有1个交点,三条直线最多有3个交点…若n条直线最多有325个交点,则n的值为( )
A.24 B.25 C.26 D.27
5.如图所示,两条直线两两相交有一个交点,三条直线两两相交最多有3个交点,平面内条直线两两相交最多有( )个交点.
A. B.
C. D.
6.在同一平面内,我们把两条直线相交将平面分得的区域数记为,三条直线两两相交最多将平面分得的区域数记为,四条直线两两相交最多将平面分得的区域数记为条直线两两相交最多将平面分得的区域数记为,若,则( )
A. B. C. D.
7.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,(≥2,且是整数)条直线相交最多能有( )
A.个交点 B.个交点
C.个交点 D.个交点
8.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是( )
A. B. C. D.
9.平面上不重合的四条直线,可能产生交点的个数为_____个.
10.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n条直线相交最多有______个交点.
11.【观察发现】如图,我们通过观察后可以发现:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;那么四条直线相交,最多有______个交点;n条直线相交,最多有______个交点(用含n的代数式表示);
【实践应用】在实际生活中同样存在数学规律型问题,请你类比上述规律探究,计算:某校七年级举办篮球比赛,第一轮要求每两班之间比赛一场,若七年级共有16个班,则这一轮共要进行多少场比赛?
12.(1)直线l1与l2是同一平面内的两条相交直线,它们有一个交点,如果在这个平面内,再画第三条直线l3,则这三条直线最多有 ___个交点;
(2)如果在(1)的基础上在这个平面内再画第四条直线l4,则这四条直线最多可有 ___个交点.
(3)由(1)(2)我们可以猜想:在同一平面内,n(n>1)条直线最多有 ___个交点.
13.观察下列图形,阅读下面相关文字并填空:
(1)在同一平面内,两条直线相交最多有1个交点,3条直线相交最多有______个交点,4条直线相交最多有______个交点,……,像这样,8条直线相交最多有______个交点,n条直线相交最多有______个交点:
(2)在同一平面内,1条直线把平面分成2部分,两条直线最多把平面分成4部分,3条直线最多把平面分成______部分,4条直线最多把平面分成______部分,……,像这样,8条直线最多把平面分成______部分,n条直线最多把平面分成______部分.
14.(1)探究一,棋型再现:m条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…
问题一:5条直线最多可以把平面分割成 个部分;
问题二:m条直线最多可以把平面分割成 个部分(用m的代数式表示);
(2)探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?
如图4,很明显,平面中画出1个圆时,会得到1+1=2个部分,所以,1个圆最多可以把平面分割成2个部分;
如图5,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个圆最多可以把平面分割成4个部分;
如图6,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,…
平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14个部分,…
问题三:5个圆最多可以把平面分割成 个部分;
问题四:n个圆最多可以把平面分割成 个部分(用n的代数式表示);
问题五:如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程);
(3)探究三,拓展延伸:
问题六:5条直线和1个圆最多可以把平面分割成 个部分;
问题七:m条直线和n个圆最多可以把平面分割成 个部分(用m、n的代数式表示).
15.问题提出:
如果在一个平面内画出条直线,最多可以把这个平面分成几部分?
问题探究:
为解决问题,我们经常采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进到复杂的情形,在探究的过程中,通过归纳得出一般性的结论,进而拓展应用.
探究一:
如图1,当在平面内不画(0条)直线时,显然该平面只有1部分,可记为.
探究二:
如图2,当在平面内画1条直线时,该平面最多被分成了2部分,比前一次多了1部分,可记为.
探究三:
当在平面内画2条直线,若两条直线平行(如图3),该平面被分成3部分;若两条直线相交(如图4),交点将第2条直线分成2段,每一段将平面多分出1部分,因此比前一次多2部分,该平面分成4部分,因此当在平面内画2条直线时,该平面最多被分成4部分,可记为,我们获得的直接经验是:直线相交时,平面被分成的部分多
探究四:
当在平面内画3条直线,若3条直线相交于一点(如图 5),该平面被分成6部分;若3条直线的交点都不相同时(如图6),第3条直线与前两条直线有2个交点,该直线被2个交点分成了3段,每段将平面多分出1部分,所以比前一次多出3 部分,该平面被分成7部分.因此当在平面内画3条直线时,该平面最多被分成7部分,可记为.我们获得的经验是:直线相交的交点个数越多,平面被分成的部分就越多.所以直接探索直线交点个数最多的情况即可.
探究五:
当在平面内画4条直线(如图7),第4条直线与前3条直线有3 个交点,该直线被3个交点分成了4段,每段将平面多分出1部分,所以比前一次多出4部分,该平面被分成11分.因此当在平面内画4条直线时,该平面最多被分成11部分,可记为.
探究六:
在平面内面5条直线,最多可以把这个平面分成几部分?(仿照前面的探究方法,写出解答过程,不需画图)
__________
问题解决:
如果在一个平面内画出条直线,最多可以把这个平面分成 部分.
应用与拓展:
(1)如果一个平面内的10条直线将平面分成了50个部分,再增加2条直线,则该平面至多被分成 个部分.
(2)如果一个平面被直线分成了497部分,那么直线的条数至少有 条.
(3)一个正方体蛋糕切5刀,被分成的块数至多为 块.
16.平面上有9条直线,任意两条都不平行,欲使它们出现29个交点,能否做到,如果能,怎么安排才能做到?如果不能,请说明理由.
17.(1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.
(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.
(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.
思维方法天地
专题01 相交线交点个数和分割平面问题
【模型讲解】观察表格:
1条直线
0个交点
平面分成(1+1)块
2条直线
1个交点
平面分成(1+1+2)块
3条直线
(1+2)个交点
平面分成(1+1+2+3)块
4条直线
(1+2+3)个交点
平面分成(1+1+2+3+4)块
根据表格中的规律解答问题:
(1)5条直线两两相交,有 个交点,平面被分成 块;
(2)n条直线两两相交,有 个交点,平面被分成 块;
(3)应用发现的规律解决问题:一张圆饼切10刀(不许重叠),最多可得到 块饼.
【分析】(1)总结规律,根据规律求解;
(2)根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:n(n﹣1);n条直线两两相交,平面被分成1+n(n+1)块;
(3)根据(2)的结论解答即可.
解:(1)5条直线两两相交,有10个交点,平面被分成16块;
故答案为:10,16;
(2)2条直线相交有1个交点;3条直线相交有1+2=3个交点;
4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;
6条直线相交有1+2+3+4+5=15个交点;…n条直线相交有1+2+3+4+…+(n﹣1)=n(n﹣1);
平面被分成1+1+2+3+4+…+(n+1)=1+n(n+1);
故答案为:n(n﹣1);1+n(n+1);
(3)当n=10时,(块),
【模型演练】
1.,,为同一平面内的任意三条直线,那么它们的交点可能有( )个.
A.,或 B.,,或 C.或 D.以上都不对
【答案】B
【分析】画出图形即可判断.
【详解】直线a、b、c的位置关系如下图:
由上图可知:平面内三条直线的交点个数可以是0,1,2或者3.
故选:B.
【点睛】本题主要考查了平面内直线之间的位置关系,题目的难点在于穷尽所有可能情况,注意不要因遗漏造成出错.
2.2条直线相交,有1个交点;3条直线相交,最多有3个交点;n条直线相交最多有多少个交点?( )
A. B. C. D.
【答案】A
【分析】由2条直线相交时最多有1个交点、3条直线相交时最多有1+2=3个交点、4条直线相交时最多有1+2+3=6个交点,可得5条直线相交时交点数为1+2+3+4、6条直线相交时交点数为1+2+3+4+5、7条直线相交时交点数为1+2+3+4+5+6,可知n条直线相交,交点最多有.
【详解】解:∵2条直线相交时,最多有1个交点;
3条直线相交时,最多有1+2=3个交点;
4条直线相交时,最多有1+2+3=6个交点;
…
∴5条直线相交时,最多有1+2+3+4=10个交点;
6条直线相交时,最多有1+2+3+4+5=15个交点;
7条直线相交时,最多有1+2+3+4+5+6=21个交点;
n条直线相交,交点最多有.
故选A.
【点睛】本题主要考查图形的变化规律,根据已知图形中相交点数量得出:n条直线相交,交点最多有1+2+3+…+n-1个是解题的关键.
3.平面内两两相交的7条直线,其交点个数最少是m个,最多是n个,则m+n的值为( )
A.18 B.20 C.22 D.24
【答案】C
【分析】根据平面内两两相交直线交点的个数所呈现的规律得出m、n的值即可.
【详解】解:平面内两两相交的7条直线,其交点个数最少是1个,即m=1,
平面内两两相交的7条直线,其交点个数最多是1+2+3+4+5+6=21(个),即n=21,
所以m+n=22,
故选:C.
【点睛】本题主要考查了直线相交的交点情况,找出交点个数是解题的关键.
4.在平面中,两条直线最多只有1个交点,三条直线最多有3个交点…若n条直线最多有325个交点,则n的值为( )
A.24 B.25 C.26 D.27
【答案】C
【分析】从简单情形考虑:分别求出2条、3条、4条、5条直线相交时最多的交点个数,找出规律即可解答.
【详解】解:2条直线相交最多有1个交点;
3条直线相交最多有1+2个交点;
4条直线相交最多有1+2+3个交点;
5条直线相交最多有1+2+3+4个交点;
…
所以n条直线相交最多有1+2+3+4+5+…+(n-1)=n(n-1)个交点;
∴n(n−1) =325,
解得n=26(负值已舍去),
则n值为26.
故选:C.
【点睛】此题考查图形的变化规律,解答此题的关键是找出其中的规律,利用规律解决问题.
5.如图所示,两条直线两两相交有一个交点,三条直线两两相交最多有3个交点,平面内条直线两两相交最多有( )个交点.
A. B.
C. D.
【答案】D
【分析】分别求出2条直线、3条直线、4条直线、5条直线…的交点个数,找出规律即可解答.
【详解】解:2条直线相交有1个交点;
3条直线相交有1+2个交点;
4条直线相交有1+2+3个交点;
5条直线相交有1+2+3+4个交点;
6条直线相交有1+2+3+4+5个交点;
…
n条直线相交有1+2+3+4+5+…+(n-1)=个交点.
故选D.
【点睛】本题考查的是直线的交点问题,解答此题的关键是找出规律.
6.在同一平面内,我们把两条直线相交将平面分得的区域数记为,三条直线两两相交最多将平面分得的区域数记为,四条直线两两相交最多将平面分得的区域数记为条直线两两相交最多将平面分得的区域数记为,若,则( )
A. B. C. D.
【答案】C
【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.
【详解】根据题意得,
2条直线最多将平面分成4个区域,
3条直线最多将平面分成7个区域,
4条直线最多将平面分成11个区域,
5条直线最多将平面分成16个区域
则,
,
,
经检验n=20是原方程的根
故选:C.
【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.
7.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,(≥2,且是整数)条直线相交最多能有( )
A.个交点 B.个交点
C.个交点 D.个交点
【答案】D
【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:
【详解】解:2条直线相交有1个交点;
3条直线相交有1+2=3个交点;
4条直线相交有1+2+3=6个交点;
5条直线相交有1+2+3+4=10个交点;
6条直线相交有1+2+3+4+5=15个交点;
…
n条直线相交有1+2+3+4+…+(n-1)=
故选:D
【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有个交点.
8.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是( )
A. B. C. D.
【答案】D
【分析】分别求出2条直线、3条直线、4条直线、5条直线…的交点个数,找出规律即可解答.
【详解】如图:
2条直线相交有1个交点;
3条直线相交有1+2个交点;
4条直线相交有1+2+3个交点;
5条直线相交有1+2+3+4个交点;
6条直线相交有1+2+3+4+5个交点;
…
n条直线相交有1+2+3+4+5+…+(n-1)=个交点.
所以a=,而b=1,
∴a+b=.
故选D.
【点睛】考查的是直线的交点问题,解答此题的关键是找出规律,需注意的是n条直线相交时最少有一个交点.
9.平面上不重合的四条直线,可能产生交点的个数为_____个.
【答案】0,1,3,4,5,6
【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.
【详解】解:(1)当四条直线平行时,无交点;
(2)当三条平行,另一条与这三条不平行时,有三个交点;
(3)当两两直线平行时,有4个交点;
(4)当有两条直线平行,而另两条不平行时,有5个交点;
(5)当四条直线同交于一点时,只有一个交点;
(6)当四条直线两两相交,且不过同一点时,有6个交点;
(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.
故答案为:0,1,3,4,5,6.
【点睛】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高,学会分类讨论思想是解题的关键.
10.如图,两条直线相交,有1个交点,三条直线相交最多有3个交点,四条直线相交最多有______个交点,n条直线相交最多有______个交点.
【答案】 6
【分析】四条直线相交最多的交点个数可通过画图得出交点个数,通过继续增加直线的条数可以找出规律即可解答;
【详解】解: 如图,两条直线相交最多有1个交点,即;
三条直线相交最多有3个交点,即;
四条直线相交最多有6个交点,即,
五条直线相交最多有10个交点,即,
……
∴n条直线两两相交,最多有个交点(n为正整数,且n≥2).
故答案为6;.
【点睛】本题考查了图形的变化,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.
11.【观察发现】如图,我们通过观察后可以发现:两条直线相交,最多有1个交点;三条直线相交,最多有3个交点;那么四条直线相交,最多有______个交点;n条直线相交,最多有______个交点(用含n的代数式表示);
【实践应用】在实际生活中同样存在数学规律型问题,请你类比上述规律探究,计算:某校七年级举办篮球比赛,第一轮要求每两班之间比赛一场,若七年级共有16个班,则这一轮共要进行多少场比赛?
【答案】[观察发现]6,;[实践应用]120场
【分析】[观察发现]根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=n(n−1)个交点;[实践应用] 把每个班作为一个点,进行一场比赛就是用线把两个点连接,用此方法即可.
【详解】[观察发现]解:①两条直线相交最多有1个交点:1=;
②三条直线相交最多有3个交点:3=;
③四条直线相交最多有6个交点:6=;…
n条直线相交最多有个交点.
故答案为:6,.
[实践应用]该类问题符合上述规律,所以可将n=16代入.
∴这一轮共要进行120场比赛.
【点睛】本题主要考查图形的变化规律,解决本题的关键是要找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.
12.(1)直线l1与l2是同一平面内的两条相交直线,它们有一个交点,如果在这个平面内,再画第三条直线l3,则这三条直线最多有 ___个交点;
(2)如果在(1)的基础上在这个平面内再画第四条直线l4,则这四条直线最多可有 ___个交点.
(3)由(1)(2)我们可以猜想:在同一平面内,n(n>1)条直线最多有 ___个交点.
【答案】(1)3;
(2)6;
(3);
【分析】要探求相交直线的交点的最多个数,则应尽量让每两条直线产生不同的交点.根据两条直线相交有一个交点,画第三条直线时,应尽量和前面两条直线再产生2个,即有1+2=3个交点,依此类推即可找到规律.
【详解】解:(1)1+2=3;
(2)3+3=6;
(3)1+2+3+4+5=15;1+2+3+…+n.
【点睛】在画图的时候,尽量让每两条直线相交产生不同的交点.
13.观察下列图形,阅读下面相关文字并填空:
(1)在同一平面内,两条直线相交最多有1个交点,3条直线相交最多有______个交点,4条直线相交最多有______个交点,……,像这样,8条直线相交最多有______个交点,n条直线相交最多有______个交点:
(2)在同一平面内,1条直线把平面分成2部分,两条直线最多把平面分成4部分,3条直线最多把平面分成______部分,4条直线最多把平面分成______部分,……,像这样,8条直线最多把平面分成______部分,n条直线最多把平面分成______部分.
【答案】(1)3,6,28,;(2)7,11,37,
【分析】(1)根据图形求出两条直线相交、三条直线相交、四条直线相交时最多交点个数,总结出规律即可得出n条直线相交最多有交点的个数;
(2)根据图形求出两条直线相交、三条直线相交、四条直线相交时最多把平面分成几部分,总结出规律即可n条直线最多把平面分成几部分.
【详解】解:(1)2条直线相交有1个交点;
3条直线相交最多有1+2=3个交点;
4条直线相交最多有1+2+3=6个交点;
5条直线相交最多有1+2+3+4=10个交点;
6条直线相交最多有1+2+3+4+5=15个交点;
7条直线相交,最多有1+2+3+4+5+6=21个交点,
8条直线相交,最多有1+2+3+4+5+6+7=28个交点,
…
n条直线相交最多有个交点;
(2)1条直线最多把平面分成1+1=2部分;
2条直线最多把平面分成1+1+2=4部分;
3条直线最多把平面分成1+1+2+3=7部分;
4条直线最多把平面分成1+1+2+3+4=11部分;
5条直线最多把平面分成1+1+2+3+4+5=16部分;
6条直线最多把平面分成1+1+2+3+4+5+6=22部分;
7条直线最多把平面分成1+1+2+3+4+5+6+7=29部分;
8条直线最多把平面分成1+1+2+3+4+5+6+7+8=37部分;
…
n条直线最多把平面分成
【点睛】此题考查了规律型:图形的变化类,体现了从一般到特殊再到一般的认知规律,有一定的挑战性,弄清题中的规律是解本题的关键.
14.(1)探究一,棋型再现:m条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…
问题一:5条直线最多可以把平面分割成 个部分;
问题二:m条直线最多可以把平面分割成 个部分(用m的代数式表示);
(2)探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?
如图4,很明显,平面中画出1个圆时,会得到1+1=2个部分,所以,1个圆最多可以把平面分割成2个部分;
如图5,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个圆最多可以把平面分割成4个部分;
如图6,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,…
平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14个部分,…
问题三:5个圆最多可以把平面分割成 个部分;
问题四:n个圆最多可以把平面分割成 个部分(用n的代数式表示);
问题五:如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程);
(3)探究三,拓展延伸:
问题六:5条直线和1个圆最多可以把平面分割成 个部分;
问题七:m条直线和n个圆最多可以把平面分割成 个部分(用m、n的代数式表示).
【答案】(1)问题一:16;问题二:;(2)问题三:22;问题四:(n2﹣n+2);问题五:23;(3)问题六:26;问题七:
【分析】(1)问题一:平面中画出第5条直线时,新增的一条直线与已知的4条直线最多有4个交点,这4个交点会把新增的这条直线分成5部分,从而多出5个部分,即总共会得到1+1+2+3+4+5=16个部分;
问题二:寻找出规律得出结论,最后求和即可得出结论;
(2)问题三:平面中画出第5个圆时,新增的一个圆与已知的4个圆最多有8个交点,这8个交点会把新增的这个圆分成8部分,从而多出8个部分,即总共会得到1+1+2+4+6+8=22个部分;
问题四:寻找出规律得出结论,最后求和即可得出结论;
问题五:根据问题四中结论列方程求解;
(3)问题六:一条直线和一个圆最多将平面分成2+2×1=4个部分,两条直线和一个圆最多将平面分成4+2×2=8部分......五条直线和一个圆最多将平面分成16+2×5=26个部分;
问题七:当m=0时,m条直线和n个圆最多可以把平面分割成(n2﹣n+2)个部分;当m≠0时,m条直线和n个圆最多可以把平面分割成个部分.
【详解】解:(1)问题一:根据规律得,平面中画出第5条直线时,新增的一条直线与已知的4条直线最多有4个交点,这4个交点会把新增的这条直线分成5部分,从而多出5个部分,
即总共会得到1+1+2+3+4+5=16个部分,
∴5条直线最多可以把平面分割成16个部分,
故答案为:16;
问题二:根据规律得,m条直线最多可以把平面分割成,
故答案为:;
(2)问题三:平面中画出第5个圆时,新增的一个圆与已知的4个圆最多有8个交点,这8个交点会把新增的这个圆分成8部分,从而多出8个部分,
即总共会得到1+1+2+4+6+8=22个部分;
故答案为:22;
问题四:根据规律得,n个圆最多可以把平面分割成1+1+2+4+…+2(n﹣1)=(n2﹣n+2)个部分;
故答案为:(n2﹣n+2);
问题五:根据问题四中结论得:n2﹣n+2=508,
解得:n1=23,n2=﹣22(舍去),
∴n的值为23;
(3)问题六:一条直线和一个圆最多将平面分成2+2×1=4个部分,两条直线和一个圆最多将平面分成4+2×2=8部分......五条直线和一个圆最多将平面分成16+2×5=26个部分,
故答案为:26;
问题七:当m=0时,m条直线和n个圆最多可以把平面分割成(n2﹣n+2)个部分;
当m≠0时,m条直线和n个圆最多可以把平面分割成个部分,
故答案为:.
【点睛】本题主要考查图形类规律的探究及逻辑推理能力,根据已有规律进行归纳推理论证是解题的关键.
15.问题提出:
如果在一个平面内画出条直线,最多可以把这个平面分成几部分?
问题探究:
为解决问题,我们经常采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进到复杂的情形,在探究的过程中,通过归纳得出一般性的结论,进而拓展应用.
探究一:
如图1,当在平面内不画(0条)直线时,显然该平面只有1部分,可记为.
探究二:
如图2,当在平面内画1条直线时,该平面最多被分成了2部分,比前一次多了1部分,可记为.
探究三:
当在平面内画2条直线,若两条直线平行(如图3),该平面被分成3部分;若两条直线相交(如图4),交点将第2条直线分成2段,每一段将平面多分出1部分,因此比前一次多2部分,该平面分成4部分,因此当在平面内画2条直线时,该平面最多被分成4部分,可记为,我们获得的直接经验是:直线相交时,平面被分成的部分多
探究四:
当在平面内画3条直线,若3条直线相交于一点(如图 5),该平面被分成6部分;若3条直线的交点都不相同时(如图6),第3条直线与前两条直线有2个交点,该直线被2个交点分成了3段,每段将平面多分出1部分,所以比前一次多出3 部分,该平面被分成7部分.因此当在平面内画3条直线时,该平面最多被分成7部分,可记为.我们获得的经验是:直线相交的交点个数越多,平面被分成的部分就越多.所以直接探索直线交点个数最多的情况即可.
探究五:
当在平面内画4条直线(如图7),第4条直线与前3条直线有3 个交点,该直线被3个交点分成了4段,每段将平面多分出1部分,所以比前一次多出4部分,该平面被分成11分.因此当在平面内画4条直线时,该平面最多被分成11部分,可记为.
探究六:
在平面内面5条直线,最多可以把这个平面分成几部分?(仿照前面的探究方法,写出解答过程,不需画图)
__________
问题解决:
如果在一个平面内画出条直线,最多可以把这个平面分成 部分.
应用与拓展:
(1)如果一个平面内的10条直线将平面分成了50个部分,再增加2条直线,则该平面至多被分成 个部分.
(2)如果一个平面被直线分成了497部分,那么直线的条数至少有 条.
(3)一个正方体蛋糕切5刀,被分成的块数至多为 块.
【答案】探究六:16;问题解决:1+;应用与拓展:(1)73;(2)31条.(3)16.
【分析】探究六:平面中画出第5条直线时,新增的一条直线与已知的4条直线最多有4个交点,这4个交点会把新增的这条直线分成5部分,从而多出5个部分,即总共会得到1+1+2+3+4+5=16个部分;
问题解决:寻找出规律得出结论,最后求和即可得出结论;
应用与拓展:
(1)根据10条直线将平面分成了50个部分,少了6个部分,再按12条直线,计算出平面的个数减去6,即可得出结论;
(2)根据公式1+=497,那计算得出结果即可;
(3)当切1刀时,块数为1+1=2块;
当切2刀时,块数为1+1+2=4块;
当切3刀时,块数为1+1+2+3=7块;
当切4刀时,块数为1+1+2+3+4=11块;
当切5刀时,块数为1+1+2+3+4+5=16块;
…
继而可得出切n刀时所得的蛋糕块数.
【详解】解:探究六:根据规律得,平面中画出第5条直线时,新增的一条直线与已知的4条直线最多有4个交点,这4个交点会把新增的这条直线分成5部分,从而多出5个部分,即总共会得到1+1+2+3+4+5=16个部分,所以,5条直线最多可以把平面分割成16个部分;
问题解决:根据规律得,n条直线最多可以把平面分割成1+1+2+3+4+…+n=1+,
故答案为1+;
应用与拓展:
(1)如果一个平面内的10条直线时,最多可分为1+=部分,现在只有50个部分,少了6个部分,当再增加2条直线,即n=12时,则最多有个部分;
(2)当被分成了497部分时,1+=497,解得(舍去),那么直线的条数至少有31条.
(3)当切1刀时,块数为1+1=2块;
当切2刀时,块数为1+1+2=4块;
当切3刀时,块数为1+1+2+3=7块;
…
当切n刀时,块数=1+(1+2+3…+n)=1+.
则切5刀时,块数为1+=16块;
故答案为:16.
【点睛】本题考查了规律的寻找,连续n个正整数的和的公式,解本题的关键是申清题意,找出变化规律,是一道中等难度的题目.
16.平面上有9条直线,任意两条都不平行,欲使它们出现29个交点,能否做到,如果能,怎么安排才能做到?如果不能,请说明理由.
【答案】能
【分析】根据相交线最多交点的个数的公式进行计算即可求解.
【详解】
理由如下:
9条直线,任意两条都不平行,最多交点的个数是=36,
∵36>29,
∴能出现29个交点,
安排如下:先使4条直线相交于一点P,另外5条直线两两相交最多可得=10个交点,与前四条直线相交最多可得5×4=20个交点,让其中两个点重合为点O,所以交点减少1个,交点个数一共有10+20-1=29个.
故能做到.
17.(1)一条直线可以把平面分成两个部分(或区域),如图,两条直线可以把平面分成几个部分?三条直线可以把平面分成几个部分?试画图说明.
(2)四条直线最多可以把平面分成几个部分?试画出示意图,并说明这四条直线的位置关系.
(3)平面上有条直线,每两条直线都恰好相交,且没有三条直线交于一点,处于这种位置的条直线分一个平面所成的区域最多,记为,试研究与之间的关系.
思维方法天地
【答案】答案见解析
【详解】试题分析:(1)分别得到两条直线平行和相交,三条直线平行和交于一点和两两相交的结果;
(2)只有四条直线两两相交时,才能将平面分得最多,分别画出图形即可求得所分平面的部分;
(3)一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分,由此即可得.
试题解析:(1)如图1,两条直线因其位置不同,可以分别把平面分成个或个区域;
如图2,三条直线因其位置关系的不同,可以分别把平面分成个、个和个区域.
(2)如图3,四条直线最多可以把平面分成个区域,此时这四条直线位置关系是两两都相交,且无三线共点.
(3)平面上条直线两两相交,且没有三条直线交于一点,把平面分成个区域,平面本身就是一个区域,当时,;
当时,;
当时,;
当时,,……由此可以归纳公式
【点睛】本题考查了规律型:图形的变化,找到an=1+1+2+3+…+n=1+是解题的关键,第(1)题注意分类讨论.
相关试卷
这是一份七年级数学下册考点精练专题15 和幂运算有关的新定义问题,共25页。
这是一份七年级数学下册考点精练专题14 与幂运算有关的规律性问题,共20页。
这是一份七年级数学下册考点精练专题08 平行与折叠问题,共30页。