七年级数学下册考点精练专题11 内外角平分线综合问题
展开
这是一份七年级数学下册考点精练专题11 内外角平分线综合问题,共37页。
专题11 内外角平分线综合问题
【例题讲解】
如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中存在一个内角等于另一个内角的2倍,求∠A的度数.
解:(1)∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣50°=130°,
(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A
∴∠Q=180°﹣(90°+∠A)=90°﹣;
(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,
∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,
∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,
即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=;
∵∠EBQ=∠EBC+∠CBQ=∠ABC+
=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,则90°﹣=,解得∠A=60°;
④∠E=2∠Q,则=2(90°﹣),解得∠A=120°.
综上所述,∠A的度数是90°或60°或120°.
【综合演练】
1.,点,分别在、上运动不与点重合.
(1)如图①,、分别是和的平分线,随着点、点的运动,当AO=BO时 ;
(2)如图②,若是的平分线,的反向延长线与的平分线交于点,随着点,的运动的大小会变吗?如果不会,求的度数;如果会,请说明理由;
(3)如图③,延长至,延长至,已知,的平分线与的平分线及其延长线相交于点、,在中,如果有一个角是另一个角的倍,求的度数.
2.已如在四边形中,.
(1)如图1,若,则________.
(2)如图2,若、分别平分、,判断与位置关系并证明理由.
(3)如图3,若、分别五等分、(即,),则_______.
3.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.
(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA= °
(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA= °;
(3)将(2)中的“∠OBA=42°”改为“∠OBA=”,其它条件不变,求∠OGA的度数.(用含的代数式表示)
(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO=(30°
相关试卷
这是一份初中人教版第十二章 全等三角形12.3 角的平分线的性质精练,文件包含八年级数学上册专题08内外角平分线问题原卷版docx、八年级数学上册专题08内外角平分线问题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份初中数学浙教版八年级上册1.5 三角形全等的判定习题,文件包含专题05与角平分线有关的内角和问题解析版docx、专题05与角平分线有关的内角和问题原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份七年级数学下册考点精练专题12 8字型中的角平分线综合问题,共34页。