初中数学中考复习 广西南宁市2019年中考数学二模试卷(含解析)
展开2019年广西南宁市中考数学二模试卷
一.选择题(共12小题,满分36分,每小题3分)
1.若实数a、b互为相反数,则下列等式中成立的是( )
A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣1
2.如图所示的几何体的主视图是( )
A. B. C. D.
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( )
A.44×108 B.4.4×109 C.4.4×108 D.4.4×1010
4.第24届冬季奥运会,将于2022年由北京市和张家口市联合举办.下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是( )
A. B.
C. D.
5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
6.不等式组的解集在数轴上可表示为( )
A. B.
C. D.
7.下列计算正确的是( )
A.4a﹣2a=2 B.2x2+2x2=4x4
C.﹣2x2y﹣3yx2=﹣5x2y D.2a2b﹣3a2b=a2b
8.在Rt△ABC中,cosA=,那么sinA的值是( )
A. B. C. D.
9.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )
A.6 B.8 C.10 D.8或10
10.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为( )
A. B.
C. D.
11.如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是( )
A.π B. C. D.
12.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:
x
…
﹣1
0
1
2
3
…
y
…
3
0
﹣1
m
3
…
有以下几个结论:
①抛物线y=ax2+bx+c的开口向下;
②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;
③方程ax2+bx+c=0的根为0和2;
④当y>0时,x的取值范围是x<0或x>2;
其中正确的是( )
A.①④ B.②④ C.②③ D.③④
二.填空题(共6小题,满分18分,每小题3分)
13.若x+y=1,xy=﹣7,则x2y+xy2= .
14.一个多边形的内角和等于它的外角和,这个多边形是 边形.
15.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为 .
16.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .
17.观察下列等式31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34+…+32020的末位数字是 .
18.如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k= .
三.解答题(共8小题,满分66分)
19.(6分)计算:2﹣1+20160﹣3tan30°+|﹣|
20.(6分)解方程:﹣=1
21.(8分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.
(1)画出△A1OB1;
(2)直接写出点A1和点B1的坐标;
(3)求线段OB1的长度.
22.(8分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .
(3)请估计全校共征集作品的什数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
23.(8分)在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.
24.(10分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.
(1)甲的速度是 米/分钟;
(2)当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;
(3)乙出发后多长时间与甲在途中相遇?
(4)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?
25.(10分)如图,以AB为直径的⊙O与BC相切于点B,与AC相交于点D.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母.(保留作图痕迹,不写作法)
①作∠BAC的平分线AE,交⊙O于点E;
②连接BE并延长交AC于点F.
探索与发现:
(2)试猜想AF与AB有怎样的数量关系,并证明;
(3)若AB=10,sin∠FBC=,求BF的长.
26.(10分)如图所示,已知抛物线y=ax2(a≠0)与一次函数y=kx+b的图象相交于A(﹣1,﹣1),B(2,﹣4)两点,点P是抛物线上不与A,B重合的一个动点,点Q是y轴上的一个动点.
(1)请直接写出a,k,b的值及关于x的不等式ax2<kx﹣2的解集;
(2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;
(3)是否存在以P,Q,A,B为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
2019年广西南宁市沛鸿民族中学中考数学二模试卷
参考答案与试题解析
一.选择题(共12小题,满分36分,每小题3分)
1.【分析】根据只有符号不同的两数叫做互为相反数解答.
【解答】解:∵实数a、b互为相反数,
∴a+b=0.
故选:B.
【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.
2.【分析】找到从几何体的正面看所得到的视图即可.
【解答】解:几何体的主视图是,
故选:B.
【点评】此题主要考查了简单几何体的三视图,关键是掌握所看的方向和位置.
3.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【解答】解:44亿=4.4×109.
故选:B.
【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
4.【分析】结合轴对称图形的概念求解即可.
【解答】解:A、是轴对称图形,本选项错误;
B、是轴对称图形,本选项错误;
C、是轴对称图形,本选项错误;
D、不是轴对称图形,本选项正确.
故选:D.
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
5.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【解答】解:将数据重新排列为17、18、18、20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.
6.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
【解答】解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选:A.
【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
7.【分析】根据合并同类项法则逐一计算可得.
【解答】解:A、4a﹣2a=2a,此选项错误;
B、2x2+2x2=4x2,此选项错误;
C、﹣2x2y﹣3yx2=﹣5x2y,此选项正确;
D、2a2b﹣3a2b=﹣a2b,此选项错误;
故选:C.
【点评】本题主要考查合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
8.【分析】利用同角三角函数间的基本关系求出sinA的值即可.
【解答】解:∵Rt△ABC中,cosA=,
∴sinA==,
故选:B.
【点评】此题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解本题的关键.
9.【分析】先利用一元二次方程解的定义把x=2代入方程x2﹣(m+4)x+4m=0得m=2,则方程化为x2﹣6x+8=0,然后解方程后利用三角形三边的关系确定三角形的三边,最后就是三角形的周长.
【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,
方程化为x2﹣6x+8=0,解得x1=4,x2=2,
因为2+2=4,
所以三角形三边为4、4、2,
所以△ABC的周长为10.
故选:C.
【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.
10.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.
【解答】解:根据题意,得:.
故选:C.
【点评】考查了分式方程的应用,此题涉及的公式:包装箱的个数=课外书的总本数÷每个包装箱装的课外书本数.
11.【分析】根据题意得出AB=AB′=10,∠BAB′=60°,根据图形得出图中阴影部分的面积S=,求出即可.
【解答】解:如图,
∵AB=AB′=10,∠BAB′=60°
∴图中阴影部分的面积是:
S=S扇形B′AB+S半圆﹣S半圆,
=,
=π.
故选:B.
【点评】本题考查了旋转的性质,扇形的面积的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较好,难度适中.
12.【分析】根据表格中的x、y的对应值,利用待定系数法求出函数解析式,再根据二次函数的图形与性质求解可得.
【解答】解:设抛物线的解析式为y=ax2+bx+c,
将(﹣1,3)、(0,0)、(3,3)代入得:
,
解得:,
∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,
由a=1>0知抛物线的开口向上,故①错误;
抛物线的对称轴为直线x=1,故②错误;
当y=0时,x(x﹣2)=0,解得x=0或x=2,
∴方程ax2+bx+c=0的根为0和2,故③正确;
当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;
故选:D.
【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的图象和性质.
二.填空题(共6小题,满分18分,每小题3分)
13.【分析】原式提取公因式,将已知等式代入计算即可求出值.
【解答】解:∵x+y=1,xy=﹣7,
∴原式=xy(x+y)=﹣7,
故答案为:﹣7
【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.
14.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.
【解答】解:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,
∴这个多边形是四边形.
故答案为四.
【点评】本题考查了多边形的外角和定理以及四边形的内角和定理,比较简单.
15.【分析】观察可以看出,三个未知数的值都没有直接给出,而是隐含在已知条件中,根据已知的等式和算术平方根与绝对值的非负性,我们可以得出各个加数均为零,从而求出各个未知数的值,代入即可求出所求代数式的值.
【解答】解:∵ ++|10﹣2c|=0,算术平方根和绝对值又都具有非负性,
∴=0,=0,|10﹣2c|=0,
∴a+b+c=0,b﹣6=0,10﹣2c=0,
解得:c=5,b=6,a=﹣11,
将其代入所求代数式得:ab+bc=﹣11×6+6×5=﹣36.
【点评】此题主要考查了非负数的性质,解题突破点是根据已知求出未知数的值,另外要注意算术平方根,绝对值具有非负性的知识点的运用,在了解了这些的基础上再来看这道题就不会那么难了.
16.【分析】根据点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,可以得到线段AB的长,从而可得BM的长,进而得到MN的长,本题得以解决.
【解答】解:∵点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,
∴BC=2NB=10,
∴AB=AC+BC=8+10=18,
∴BM=9,
∴MN=BM﹣NB=9﹣5=4,
故答案为:4.
【点评】本题考查两点间的距离,解题的关键是找出各线段之间的关系,然后得到所求问题需要的条件.
17.【分析】通过观察31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,对前面几个数相加,可以发现末位数字分别是3,2,9,0,3,2,9,0,可知每四个为一个循环,从而可以求得到3+32+33+34+…+32020的末位数字是多少.
【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,
∴3=3,
3+9=12,
12+27=39,
39+81=120,
120+243=363,
363+729=1092,
1092+2187=3279,
又∵2020÷4=505,
∴3+32+33+34+…+32020的末位数字是0,
故答案为0.
【点评】本题考查尾数特征,解题的关键是通过观察题目中的数据,发现其中的规律.
18.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.
【解答】解:∵BD为Rt△ABC的斜边AC上的中线,
∴BD=DC,∠DBC=∠ACB,
又∠DBC=∠EBO,
∴∠EBO=∠ACB,
又∠BOE=∠CBA=90°,
∴△BOE∽△CBA,
∴,即BC×OE=BO×AB.
又∵S△BEC=4,
∴BC•EO=4,
即BC×OE=8=BO×AB=|k|.
∵反比例函数图象在第一象限,k>0.
∴k=8.
故答案是:8.
【点评】本题考查反比例函数系数k的几何意义.反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
三.解答题(共8小题,满分66分)
19.【分析】直接利用特殊角的三角函数值以及绝对值的性质、负指数幂的性质分别化简得出答案.
【解答】解:原式=+1﹣3×+
=+1﹣+
=.
【点评】此题主要考查了实数运算,正确化简各数是解题关键.
20.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.依此即可求解.
【解答】解:,
去分母得:x(x+3)﹣3=x2﹣9,
解得:x=﹣2.
检验:把x=﹣2代入x2﹣9=﹣5≠0,
故方程的解为x=﹣2.
【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:
①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.
②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.
21.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;
(2)由所得图形可得点的坐标;
(3)利用勾股定理可得答案.
【解答】解:(1)画出△A1OB1,如图.
(2)点A1(0,1),点B1(﹣2,2).
(3)OB1=OB==2.
【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.
22.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;
(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
故答案为:抽样调查.
(2)所调查的4个班征集到的作品数为:6÷=24件,
C班有24﹣(4+6+4)=10件,
补全条形图如图所示,
扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
故答案为:150°;
(3)∵平均每个班=6件,
∴估计全校共征集作品6×30=180件.
(4)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好选取的两名学生性别相同的概率为=.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.
23.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.
【解答】证明:四边形ADEF是平行四边形,
∵等边三角形BCE和等边三角形ABF,
∴BE=BC,BF=BA.
又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,
∴∠FBE=∠ABC,
在△BFE和△BCA中,
∴△BFE≌△BCA(SAS),
∴DE=AC
∵在等边三角形ACD中,AC=AD,
∴FE=AD,
同理FA=ED.
∴四边形ADEF是平行四边形.
【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键
24.【分析】(1)由图象可得甲行走的路程和时间,即可求甲的速度;
(2)由待定系数法可求乙离景点A的路程s与t的函数表达式;
(3)两人相遇实际上是函数图象求交点;
(4)由乙从B景点开始行走的路程+360=景点B和景点C之间的距离,可列方程解即可.
【解答】解:(1)甲的速度==60米/分钟,
故答案为:60
(2)当20≤t≤30时,设s=mt+n,
由题意得
解得
∴s=300t﹣6000
(3)当20≤t≤30时,60t=300t﹣6000,
解得t=25,
∴乙出发后时间=25﹣20=5,
当30≤t≤60时,60t=3000,
解得t=50,
∴乙出发后时间=50﹣20=30,
综上所述:乙出发5分钟和30分钟时与甲在途中相遇;
(4)设乙从B步行到C的速度是x米/分钟,
由题意得5400﹣3000﹣(90﹣60)x=360,
解得x=68,
所以乙从景点B步行到景点C的速度是68米/分钟.
【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.
25.【分析】(1)根据角平分线的尺规作图的方法即可得出结论;
(2)利用ASA判断出△ABE≌△AFE即可得出结论;
(3)先利用同角的余角相等判断出∠BAE=∠FBC,再在Rt△ABE中,求出BE,即可得出结论.
【解答】解:(1)如图1所示,AE就是所作的图形;
(2)AF=AB,
∵AB是⊙O的直径,
∴∠AEB=∠AEF=90°,
∵AE平分∠BAC,
∴∠BAE=∠FAE,
在△ABE和△AFE中,,
∴△ABE≌△AFE(ASA),
∴AB=AF;
(3)∵BC是⊙O的切线,
∴AB⊥BC,
∴∠ABE+∠FBC=90°,
∵∠ABE+∠BAE=90°,
∴∠BAE=∠FBC,
∵sin∠FBC=,
∴sin∠BAE=,
在Rt△ABE中,AB=10,sin∠BAE==,
∴BE=AB=2,
∵AF=AB,∠BAE=∠FAE,
∴BF=2BE=4.
【点评】此题是圆的综合题,主要考查了利用尺规作图作角的平分线,全等三角形的判定和性质,等腰三角形的性质,锐角三角函数,判断出∠BAE=∠FBC是解本题的关键.
26.【分析】(1)根据待定系数法得出a,k,b的值,进而得出不等式的解集即可;
(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C,连接PC.根据三角形的面积公式解答即可;
(3)根据平行四边形的性质和坐标特点解答即可.
【解答】解:(1)把A(﹣1,﹣1),代入y=ax2中,可得:a=﹣1,
把A(﹣1,﹣1),B(2,﹣4)代入y=kx+b中,可得:,
解得:,
所以a=﹣1,k=﹣1,b=﹣2,
关于x的不等式ax2<kx﹣2的解集是x<﹣1或x>2,
(2)过点A作y轴的平行线,过点B作x轴的平行线,两者交于点C.
∵A(﹣1,﹣1),B(2,﹣4),
∴C(﹣1,﹣4),AC=BC=3,
设点P的横坐标为m,则点P的纵坐标为﹣m2.
过点P作PD⊥AC于D,作PE⊥BC于E.则D(﹣1,﹣m2),E(m,﹣4),
∴PD=m+1,PE=﹣m2+4.
∴S△APB=S△APC+S△BPC﹣S△ABC
=
=
=.
∵<0,,﹣1<m<2,
∴当时,S△APB 的值最大.
∴当时,,S△APB=,
即△PAB面积的最大值为,此时点P的坐标为(,)
(3)存在三组符合条件的点,
当以P,Q,A,B为顶点的四边形是平行四边形时,
∵AP=BQ,AQ=BP,A(﹣1,﹣1),B(2,﹣4),
可得坐标如下:
①P′的横坐标为﹣3,代入二次函数表达式,
解得:P'(﹣3,﹣9),Q'(0,﹣12);
②P″的横坐标为3,代入二次函数表达式,
解得:P″(3,﹣9),Q″(0,﹣6);
③P的横坐标为1,代入二次函数表达式,
解得:P(1,﹣1),Q(0,﹣4).
故:P的坐标为(﹣3,﹣9)或(3,﹣9)或(1,﹣1),
Q的坐标为:Q(0,﹣12)或(0,﹣6)或(0,﹣4).
【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
2023年广西南宁市银海区三雅学校中考数学二模试卷(含解析): 这是一份2023年广西南宁市银海区三雅学校中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023年广西南宁市武鸣区中考数学二模试卷(含解析): 这是一份2023年广西南宁市武鸣区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西南宁市武鸣区中考数学二模试卷(含解析): 这是一份2023年广西南宁市武鸣区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。