2022-2023学年河北省沧州市中考数学专项突破仿真模拟试题(3月4月)含解析
展开
这是一份2022-2023学年河北省沧州市中考数学专项突破仿真模拟试题(3月4月)含解析,共52页。试卷主要包含了选一选,填 空 题,计算题,作图题,解 答 题,综合题等内容,欢迎下载使用。
2022-2023学年河北省沧州市中考数学专项突破仿真模拟试题
(3月)
一、选一选
1. ﹣10+3的结果是( )
A. ﹣7 B. 7 C. ﹣13 D. 13
2. 计算(a3)2的结果是( )
A. a5 B. a6 C. a8 D. a9
3. 若x、y为有理数,下列各式成立的是( )
A. (﹣x)3=x3 B. (﹣x)4=﹣x4 C. x4=﹣x4 D. ﹣x3=(﹣x)3
4. 图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )
A. 主视图 B. 俯视图
C. 左视图 D. 主视图、俯视图和左视图都改变
5. 若x,y的值均扩大为原来的2倍,则下列分式的值保持没有变的是( )
A. B. C. D.
6. 下面计算正确的是( )
A. 6a-5a=1 B. a+2a2=3a2 C. -(a-b)=-a+b D. 2(a+b)=2a+b
7. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )
A. 甲 B. 乙 C. 丙 D. 丁
8. 在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是( )
A. 一定相似 B. 当E是AC中点时相似
C. 没有一定相似 D. 无法判断
9. 如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是( )
A. B.
C D.
10. 如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )
A. B. C. D.
二、填 空 题
11. 一元没有等式-x≥2x+3的整数解是________.
12. 分解因式
13. 圆内接正六边形的边心距为2,则这个正六边形的面积为_____cm2.
14. 如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是m.
三、计算题
15. 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .
16. 解方程:x2+x-1=0
四、作图题
17. 如图,在平面直角坐标系中,的三个顶点分别是、、
(1)画出关于点成对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;
(2)△和△关于某一点成对称,则对称的坐标为 .
五、解 答 题
18. 下表给出了代数式﹣x2+bx+c与x的一些对应值:
x
…
﹣2
﹣1
0
1
2
3
…
﹣x2+bx+c
…
5
n
c
2
﹣3
﹣10
…
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的值.
19. 如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
20. 如图,函数y=kx+b的图象分别与反比例函数y=的图象在象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
21. 如图,放在直角坐标系中正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上概率为0.75;若存在,指出其中的一种平移方式;若没有存在,请说明理由.
六、综合题
22. 如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N
① 当t=时,判断点P是否在直线ME上,说明理由;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在值?说明理由.
23. 在平面直角坐标系中,点 A(﹣2,0),B(2,0),C(0,2),点 D,点E分别是 AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接 AD′,BE′.
(1)如图①,若 0°<α<90°,当 AD′∥CE′时,求α的大小;
(2)如图②,若 90°<α<180°,当点 D′落在线段 BE′上时,求 sin∠CBE′的值;
(3)若直线AD′与直线BE′相交于点P,求点P横坐标m的取值范围(直接写出结果即可).
2022-2023学年河北省沧州市中考数学专项突破仿真模拟试题
(3月)
一、选一选
1. ﹣10+3的结果是( )
A. ﹣7 B. 7 C. ﹣13 D. 13
【正确答案】A
【详解】分析:根据有理数的加法法则,即可解答.
详解:-10+3=-(10-3)=-7,
故选A.
点睛:有理数加法法则:1.同号相加,取相同符号,并把值相加.
2.值没有等的异号加减,取值较大的加数符号,并用较大的值减去较小的值.互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数.
2. 计算(a3)2结果是( )
A. a5 B. a6 C. a8 D. a9
【正确答案】B
【详解】(a3)2=a6,
故选:B.
3. 若x、y为有理数,下列各式成立的是( )
A. (﹣x)3=x3 B. (﹣x)4=﹣x4 C. x4=﹣x4 D. ﹣x3=(﹣x)3
【正确答案】D
【详解】分析:分别利用有理数的乘方运算法则分析得出答案.
详解:A、(-x)3=-x3,故此选项错误;
B、(-x)4=x4,故此选项错误;
C、x4=-x4,此选项错误;
D、-x3=(-x)3,正确.
故选D.
点睛:正数的任何次幂都是正数.负数的奇数次幂是负数,偶数次幂是正数.0的任何次幂都是0.
4. 图①是由五个完全相同小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )
A. 主视图 B. 俯视图
C. 左视图 D. 主视图、俯视图和左视图都改变
【正确答案】A
【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.
【详解】解:①的主视图是层三个小正方形,第二层中间一个小正方形;左视图是层两个小正方形,第二层左边一个小正方形;俯视图是层中间一个小正方形,第二层三个小正方形;
②的主视图是层三个小正方形,第二层左边一个小正方形;左视图是层两个小正方形,第二层左边一个小正方形;俯视图是层中间一个小正方形,第二层三个小正方形;
所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变,
故选:A.
本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.
5. 若x,y的值均扩大为原来的2倍,则下列分式的值保持没有变的是( )
A. B. C. D.
【正确答案】A
【详解】试题解析:根据分式基本性质,可知若x,y的值均扩大为原来的2倍,
A、;
B、;
C、;
D、.
故A正确.
故选A.
6. 下面计算正确的是( )
A. 6a-5a=1 B. a+2a2=3a2 C. -(a-b)=-a+b D. 2(a+b)=2a+b
【正确答案】C
【详解】解:A.6a﹣5a=a,故此选项错误,没有符合题意;
B.a与没有是同类项,没有能合并,故此选项错误,没有符合题意;
C.﹣(a﹣b)=﹣a+b,故此选项正确,符合题意;
D.2(a+b)=2a+2b,故此选项错误,没有符合题意;
故选C.
7. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是( )
A 甲 B. 乙 C. 丙 D. 丁
【正确答案】D
【详解】甲、乙、丙、丁四人射击成绩的平均数均是9.2环,甲的方差是0.56,乙的方差是0.56,乙的方差是0.60,丙的方差0.50,丁的方差0.45,其中丁的方差最小,所以成绩最稳定的是丁
8. 在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是( )
A. 一定相似 B. 当E是AC中点时相似
C. 没有一定相似 D. 无法判断
【正确答案】A
【分析】略
【详解】连结OC,
∵∠C=90°,AC=BC,
∴∠B=45°,
∵点O为AB的中点,
∴OC=OB,∠ACO=∠BCO=45°,
∵∠EOC+∠COF=∠COF+∠BOF=90°,
∴∠EOC=∠BOF,
在△COE和△BOF中,
∴△COE≌△BOF(ASA),
∴OE=OF,
∴△OEF是等腰直角三角形,
∴∠OEF=∠OFE=∠A=∠B=45°,
∴△OEF∽△△CAB.
故选A.
略
9. 如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是( )
A. B.
C. D.
【正确答案】B
【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线y=x+b中求得b的值,再根据函数的增减性即可得到b的取值范围.
【详解】解:直线y=x+b点B时,将B(3,1)代入直线y=x+b中,可得+b=1,解得b=-;
直线y=x+b点A时:将A(1,1)代入直线y=x+b中,可得+b=1,解得b=;
直线y=x+b点C时:将C(2,2)代入直线y=x+b中,可得1+b=2,解得b=1.
故b的取值范围是-≤b≤1.
故选B.
考查了函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.
10. 如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为( )
A. B. C. D.
【正确答案】B
【分析】先求出连接两点所得的所有线段总数,再用列举法求出取到长度为的线段条数,由此能求出在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率.
【详解】根据题意可得所有的线段有15条,长度为的线段有AE、AC、FD、FB、EC、BD共6条,则P(长度为的线段)=.
故选:B
本题考查概率的求法,是基础题,解题时要认真审题,注意等可能概率计算公式的合理运用.
二、填 空 题
11. 一元没有等式-x≥2x+3的整数解是________.
【正确答案】﹣1
【详解】解没有等式得:,
∵小于或等于-1的整数是-1,
∴没有等式的整数解是-1.
即-1.
12. 分解因式
【正确答案】原式.
【分析】先提取公因式x,再利用完全平方公式进行二次因式分解.
【详解】
本题考查了提公因式法与公式分解因式,提取公因式后再利用完全平方公式继续进行二次因式分解.
13. 圆内接正六边形的边心距为2,则这个正六边形的面积为_____cm2.
【正确答案】.
【详解】试题分析:因为圆内接正六边形的两条半径与正六边形边长组成等边三角形,由边心距可求得正六边形的边长是,把正六边形分成6个这样的三角形,则这个正六边形的面积为4×÷2×6=.
考点:圆内接正多边形面积计算.
14. 如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=1.5 m,CD=4.5 m,点P到CD的距离为2.7 m,则AB与CD间的距离是m.
【正确答案】1.8
【详解】由AB ∥ CD,可得△PAB ∽ △PCD,设CD到AB距离为x,根据相似三角形的性质可得,即,解得x=1.8m.
所以AB离地面的距离为1.8m,
故答案为1.8.
三、计算题
15. 计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+ .
【正确答案】2
【详解】解:原式=1+3-﹣4+3
=.
16. 解方程:x2+x-1=0
【正确答案】
【详解】试题分析:本题考查了求根公式法解一元二次方程组,先确定a=1,b=1,c=-1,然后求出b2-4ac的值,代入求出方程的根.
解:a=1,b=1,c=-1.
b2-4ac=12-4×1×(-1)=1+4=5.
x= (4分)
x=
x1=,x2=
四、作图题
17. 如图,在平面直角坐标系中,的三个顶点分别是、、
(1)画出关于点成对称的△;平移,若点的对应点的坐标为,画出平移后对应的△;
(2)△和△关于某一点成对称,则对称的坐标为 .
【正确答案】(1)画图见解析;(2)(2,-1).
【详解】解:(1).△A1B1C如图所示, △A2B2C2如图所示;
(2).如图,对称为(2,﹣1).
五、解 答 题
18. 下表给出了代数式﹣x2+bx+c与x的一些对应值:
x
…
﹣2
﹣1
0
1
2
3
…
﹣x2+bx+c
…
5
n
c
2
﹣3
﹣10
…
(1)根据表格中的数据,确定b,c,n的值;
(2)设y=﹣x2+bx+c,直接写出0≤x≤2时y的值.
【正确答案】(1)b=-2,c=5,n=6;(2)y的值是5
【分析】(1)把(﹣2,5)、(1,2)分别代入﹣x2+bx+c中得到关于b、c的方程组,然后解方程组即可得到b、c的值;然后计算x=﹣1时的代数式的值即可得到n的值;
(2)利用表中数据即可求解.
【详解】(1)根据表格数据可得 ,解得,
∴﹣x2+bx+c=﹣x2﹣2x+5,
当x=﹣1时,﹣x2﹣2x+5=6,即n=6;
(2)根据表中数据二次函数y=﹣x2﹣2x+5的对称轴为直线x=-1,开口向下,
∴当0≤x≤2时,y随x的增大而减小,
∴当x=0时,y有值5.
本题考查了待定系数法求二次函数解析式、二次函数的性质等知识,解题的关键是表格中对应数据代入,得到方程组.
19. 如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).
【正确答案】CE的长为(4+)米
【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
【详解】解:过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=,
∴CH=AH•tan∠CAH,
∴CH=AH•tan∠CAH=6tan30°=6×=2(米),
∵DH=1.5,
∴CD=2+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=,
∴CE==(4+)(米),
答:拉线CE的长为(4+)米.
本题主要考查解直角三角形的应用,解题的关键是要求学生借助仰角关系构造直角三角形,并图形利用三角函数解直角三角形.
20. 如图,函数y=kx+b的图象分别与反比例函数y=的图象在象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
【正确答案】(1) ,y=2x﹣5;(2).
【分析】(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-5),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5)
把B(0,﹣5),A(4,3)代入y=kx+b得:
∴y=2x﹣5.
(2)作MD⊥y轴于点D.
∵点M在函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5)则点D(0,2x-5)
∵MB=MC,
∴CD=BD
∴8-(2x-5)=2x-5+5
解得:x=
∴2x﹣5= ,
∴点M的坐标为 .
本题考查了函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
21. 如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为0.75;若存在,指出其中的一种平移方式;若没有存在,请说明理由.
【正确答案】(1)P点落在正方形ABCD面上(含正方形内部和边界)的概率为;
(2)存在满足题设要求的平移方式:先将正方形ABCD上移2个单位,后右移1个单位(先右后上亦可);或先将正方形ABCD上移1个单位,后右移2个单位(先右后上亦可)
【分析】(1)依题意得点P的横坐标有数字1,2,3,4四种选择,纵坐标也有数字1,2,3,4四种选择,故点P的坐标共有16种情况,有四种情况将落在正方形ABCD上,所以概率为.
(2)要使点P落在正方形面上的概率为,所以要将正方形移动使之符合.
【详解】(1)根据题意,点P的横坐标有数字1,2,3,4四种选择,点P的纵坐标也有数字1,2,3,4四种选择,所以构成点P的坐标共有4×4=16种情况.
如下图所示:
其中点P的(1,1),(1,2),(2,1),(2,2)四种情况将落在正方形ABCD面上,
故所求的概率为.
(2)因为要使点P落在正方形ABCD面上的概率为=>,所以只能将正方形ABCD向上或向右整数个单位平移,且使点P落在正方形面上的数目为12.
∴存在满足题设要求的平移方式:先将正方形ABCD上移2个单位,后右移1个单位(先右后上亦可);或先将正方形ABCD上移1个单位,后右移2个单位(先右后上亦可).
点睛:本题综合考查了平移性质,几何概率的知识以及正方形的性质.用到的知识点为:概率=所求情况数与总情况数之比.
六、综合题
22. 如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求该抛物线所对应的函数关系式;
(2)将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N
① 当t=时,判断点P是否在直线ME上,说明理由;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在值?说明理由.
【正确答案】(1);(2)①没有在,理由见解析.②S存在值.
【分析】(1)设出抛物线的顶点式y=a(x-2)2+4,将原点的坐标代入解析式就可以求出a的值,从而求出函数的解析式.
(2)①由(1)中抛物线的解析式可以求出E点的坐标,从而可以求出ME的解析式,再将P点的坐标代入直线的解析式就可以判断P点是否在直线ME上.
②设出点N(t,-(t-2)2+4),可以表示出PN的值,根据梯形的面积公式可以表示出S与t的函数关系式,从而可以求出结论.
【详解】(1)因所求抛物线的顶点M的坐标为(2,4),
故可设其关系式为y=a(x﹣2)2+4
又∵抛物线O(0,0),
∴得a(0﹣2)2+4=0,
解得a=﹣1
∴所求函数关系式为y=﹣(x﹣2)2+4,
即y=﹣x2+4x.
(2)①点P没有在直线ME上.
根据抛物线的对称性可知E点的坐标为(4,0),
又M的坐标为(2,4),
设直线ME的关系式为y=kx+b.
于是得,
解得
所以直线ME的关系式为y=﹣2x+8.
由已知条件易得,当t=时,OA=AP=,
∴P
∵P点的坐标没有满足直线ME的关系式y=﹣2x+8.
∴当t=时,点P没有在直线ME上.
②S存在值.理由如下:
∵点A在x轴的非负半轴上,且N在抛物线上,
∴OA=AP=t.
∴点P,N的坐标分别为(t,t)、(t,﹣t2+4t)
∴AN=﹣t2+4t(0≤t≤3),
∴AN﹣AP=(﹣t2+4t)﹣t=﹣t2+3t=t(3﹣t)≥0,
∴PN=﹣t2+3t
(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,
∴S=DC•AD=×3×2=3.
(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形
∵PN∥CD,AD⊥CD,
∴S=(CD+PN)•AD= [3+(﹣t2+3t)]×2=﹣t2+3t+3=﹣(t﹣)2+
其中(0<t<3),由a=﹣1,0<<3,此时S=.
综上所述,当t=时,以点P,N,C,D为顶点的多边形面积有值,这个值为.
此题考查用待定系数求函数解析式,用到顶点坐标,第二问是研究动点问题,点动图也动,根据几何关系巧妙设点,把面积用t表示出来,转化为函数最值问题.
23. 在平面直角坐标系中,点 A(﹣2,0),B(2,0),C(0,2),点 D,点E分别是 AC,BC的中点,将△CDE绕点C逆时针旋转得到△CD′E′,及旋转角为α,连接 AD′,BE′.
(1)如图①,若 0°<α<90°,当 AD′∥CE′时,求α的大小;
(2)如图②,若 90°<α<180°,当点 D′落在线段 BE′上时,求 sin∠CBE′的值;
(3)若直线AD′与直线BE′相交于点P,求点P的横坐标m的取值范围(直接写出结果即可).
【正确答案】(1)60°;(2);(3)﹣≤m≤.
【详解】试题分析:(1)如图1中,根据平行线的性质可得∠AD′C=∠E′CD′=90°,再根据AC=2CD′,推出∠CAD′=30°,由此即可解决问题; (2)如图2中,作CK⊥BE′于K.根据勾股定理和等腰直角三角形的性质求出CK的长,再根据sin∠CBE′= ,即可解决问题;(3)根据图3、图4分别求出点P横坐标的值以及最小值即可解决问题.
试题解析:
(1)如图1中,
∵AD′∥CE′,
∴∠AD′C=∠E′CD′=90°,
∵AC=2CD′,
∴∠CAD′=30°,
∴∠ACD′=90°﹣∠CAD′=60°,
∴α=60°.
(2)如图2中,作CK⊥BE′于K.
∵AC=BC= =2 ,
∴CD′=CE′= ,
∵△CD′E′是等腰直角三角形,CD′=CE′= ,
∴D′E′=2,
∵CK⊥D′E′,
∴KD′=E′K,
∴CK= D′E′=1,
∴sin∠CBE′= = = .
(3)如图3中,以C为圆心为半径作⊙C,当BE′与⊙C相切时AP最长,则四边形CD′PE′是正方形,作PH⊥AB于H.
∵AP=AD′+PD′= + ,
∵cos∠PAB= = ,
∴AH=2+ ,
∴点P横坐标的值为.
如图4中,当BE′与⊙C相切时AP最短,则四边形CD′PE′是正方形,作PH⊥AB于H.
根据对称性可知OH= ,
∴点P横坐标的最小值为﹣,
∴点P横坐标的取值范围为﹣≤m≤.
点睛:本题考查的知识点有直角三角形的性质、锐角三角函数、等腰三角形的判定以及直线与圆的位置关系的确定,是一道综合性较强的题目,难度大.
2022-2023学年河北省沧州市中考数学专项突破仿真模拟试题
(4月)
一、选一选:
1. 若-1
相关试卷
这是一份2022-2023学年河北省沧州市中考数学专项突破模拟试卷(含解析),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年河北省保定市中考数学专项突破仿真模拟试题(一模二模)含解析,共57页。试卷主要包含了选一选,填 空 题,解 答 题,应用题,推理与计算,综合应用与探究等内容,欢迎下载使用。
这是一份2022-2023学年河北省秦皇岛市中考数学专项突破仿真模拟试题(一模二模)含解析,共7页。试卷主要包含了34, 估算 的值,它的整数部分是等内容,欢迎下载使用。