2022-2023学年贵州省铜仁市中考数学专项提升仿真模拟试题(一模二模)含解析
展开
这是一份2022-2023学年贵州省铜仁市中考数学专项提升仿真模拟试题(一模二模)含解析,共51页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。
2022-2023学年贵州省铜仁市中考数学专项提升仿真模拟试题
(一模)
一、选一选(每小题3分,共36分)
1. 下列各组数中,互为相反数的是( )
A. 2与 B. (﹣1)2与1 C. ﹣1与(﹣1)2 D. 2与|﹣2|
2. 函数y=自变量x的取值范围是( )
A. x≥1 B. x≥1且x≠3 C. x≠3 D. 1≤x≤3
3. 在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
A. 1 B. 2 C. 3 D. 4
4. 下列计算正确的是( )
A. a2•a3=a6 B. (a2)3=a6 C. a2+a2=a3 D. a6÷a2=a3
5. 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A 76° B. 78° C. 80° D. 82°
6. 没有等式组的解集是( )
A. ﹣1≤x≤4 B. x<﹣1或x≥4 C. ﹣1<x<4 D. ﹣1<x≤4
7. 李老师为了了解学生暑期在家的阅读情况,随机了20名学生某的阅读小时数,具体情况统计如下:
阅读时间(小时)
2
2.5
3
3.5
4
学生人数(名)
1
2
8
6
3
则关于这20名学生阅读小时数的说确的是( )
A. 众数是8 B. 中位数是3
C. 平均数是3 D. 方差是0.34
8. 计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是( )
A. 5 B. ﹣2 C. 2 D. ﹣1
9. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示( )
A. 5.3×103 B. 5.3×104 C. 5.3×107 D. 5.3×108
10. 一个几何体的三视图如图所示,则此几何体是( )
A. 棱柱 B. 正方体 C. 圆柱 D. 圆锥
11. 在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)大致图象如图所示,则下列结论正确的是( )
A. a<0,b<0,c>0
B. ﹣=1
C. a+b+c<0
D. 关于x的方程ax2+bx+c=﹣1有两个没有相等的实数根
12. 已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好点C和点D,则k的值为( )
A. B. C. D.
二、填 空 题(每小题3分,共15分)
13. 已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.
14. 计算:()•=__.
15. 对于一切没有小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),则______
16. 甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则__秒,甲乙两点次在同一边上.
17. 已知:如图,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为__.
三、解 答 题(本题共7小题,共69分)
18. 先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.
19. 在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
(1)如图,点D线段CB上时,
①求证:△AEF≌△ADC;
②连接BE,设线段CD=x,BE=y,求y2﹣x2值;
(2)当∠DAB=15°时,求△ADE的面积.
20. 某县为了丰富初中学生的大课间,要求各学校开展形式多样的阳光体育某中学就“学生体育兴趣爱好”的问题,随机了本校某班的学生,并根据结果绘制成如下的没有完整的扇形统计图和条形统计图:
在这次中,喜欢篮球项目的同学有多少人?
在扇形统计图中,“乒乓球”的百分比为多少?
如果学校有800名学生,估计全校学生中有多少人喜欢篮球项目?
请将条形统计图补充完整;
在被的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请运用列表或树状图求出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
21. 如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略没有计,结果到0.1米.参考数据:≈1.414,≈1.732)
22. 如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
23. 某商场将每件进价为80元的某种商品原来按每件100元出售,可售出100件.后来市场,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来可获利润多少元?
(2)设后来该商品每件降价x元,商场可获利润y元.
①若商场经营该商品要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,题意写出当x取何值时,商场获利润没有少于2160元.
24. 如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
2022-2023学年贵州省铜仁市中考数学专项提升仿真模拟试题
(一模)
一、选一选(每小题3分,共36分)
1. 下列各组数中,互为相反数的是( )
A. 2与 B. (﹣1)2与1 C. ﹣1与(﹣1)2 D. 2与|﹣2|
【正确答案】C
【分析】两数互为相反数,它们的和为0,可对四个选项进行一一分析,看选项中的两个数和是否为0,如果和为0,则那组数互为相反数.
【详解】解:A、2+=;
B、(﹣1)2+1=2;
C、﹣1+(﹣1)2=0;
D、2+|﹣2|=4.
故选:C.
此题考查相反数的定义及性质:互为相反数的两个数的和为0,以及有理数的加法计算法则.
2. 函数y=自变量x的取值范围是( )
A. x≥1 B. x≥1且x≠3 C. x≠3 D. 1≤x≤3
【正确答案】B
【详解】解:由题意得,
x-1≥0且x-3≠0,
∴x≥1且x≠3.
故选:B.
3. 在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
A. 1 B. 2 C. 3 D. 4
【正确答案】C
【详解】在实数﹣,0.21, , , ,0.20202中,
根据无理数的定义可得其中无理数有﹣,,,共三个.
故选C.
4. 下列计算正确的是( )
A. a2•a3=a6 B. (a2)3=a6 C. a2+a2=a3 D. a6÷a2=a3
【正确答案】B
【详解】试题解析:A.故错误.
B.正确.
C.没有是同类项,没有能合并,故错误.
D.
故选B.
点睛:同底数幂相乘,底数没有变,指数相加.
同底数幂相除,底数没有变,指数相减.
5. 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
【正确答案】B
【详解】如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选B.
6. 没有等式组的解集是( )
A. ﹣1≤x≤4 B. x<﹣1或x≥4 C. ﹣1<x<4 D. ﹣1<x≤4
【正确答案】D
【详解】试题分析:解没有等式①可得:x>-1,解没有等式②可得:x≤4,则没有等式组的解为-1<x≤4,故选D.
7. 李老师为了了解学生暑期在家的阅读情况,随机了20名学生某的阅读小时数,具体情况统计如下:
阅读时间(小时)
2
2.5
3
3.5
4
学生人数(名)
1
2
8
6
3
则关于这20名学生阅读小时数的说确的是( )
A. 众数是8 B. 中位数是3
C. 平均数是3 D. 方差是0.34
【正确答案】B
【分析】A、根据众数的定义找出出现次数至多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
【详解】解: A、由统计表得:众数为3,没有是8,所以此选项没有正确;
B、随机了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
C、平均数=,所以此选项没有正确;
D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项没有正确;
故选B.
本题考查方差;加权平均数;中位数;众数.
8. 计算(2017﹣π)0﹣(﹣)﹣1+tan30°的结果是( )
A. 5 B. ﹣2 C. 2 D. ﹣1
【正确答案】A
【详解】试题分析:原式=1-(-3)+=1+3+1=5,故选A.
9. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )
A. 5.3×103 B. 5.3×104 C. 5.3×107 D. 5.3×108
【正确答案】C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的值
相关试卷
这是一份2022-2023学年安徽省合肥中考数学专项提升仿真模拟试题(一模二模)含解析,共50页。试卷主要包含了选一选,填 空 题,计算题,解 答 题,综合题等内容,欢迎下载使用。
这是一份2022-2023学年贵州省铜仁市中考数学专项突破仿真模拟试题(一模二模)含解析,共48页。试卷主要包含了填 空 题,解 答 题等内容,欢迎下载使用。
这是一份2022-2023学年贵州省安顺市中考数学专项提升仿真模拟试题(一模二模)含解析,共61页。试卷主要包含了三象限等内容,欢迎下载使用。