皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)
展开
这是一份皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析),共12页。试卷主要包含了已知函数,是的反函数,则,函数的图象大致为,已知函数的值域为,且满足,若在,下列命题是真命题的是,已知,则等内容,欢迎下载使用。
皖豫名校2022-2023学年(上)高一年级阶段性测试(二)数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A. B. C. D.2.若关于x的不等式的解集是,则( )A. B. C. D.13.若p:,则p成立的充分不必要条件可以是( )A. B.C. D.4.已知函数,是的反函数,则( )A.10 B.8 C.5 D.25.已知幂函数满足条件,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致为( )A. B.C. D.7.已知函数的值域为,且满足,若在()上的值域为,则的最大值为( )A.1 B.2 C.3 D.48.已知函数若方程有三个不等的实根,则实数k的取值范围是( )A. B. C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题是真命题的是( )A.函数是减函数B.“至少有一个整数x,使得是质数”是存在量词命题C.,D.命题p:,的否定是:,10.已知,则( )A.若,则 B.若,则C.若,则 D.若,则11.若函数满足:当时,的值域为,则称为局部的函数,下列函数中是局部的函数的是( )A. B. C. D.12.已知函数,则( )A.不等式的解集是B.C.存在唯一的x,使得D.函数的图象关于原点对称三、填空题:本题共4小题,每小题5分,共20分.13.已知集合,则________.14.已知函数,若,则实数a的取值范围是________.15.若函数的最小值为,则实数a的值为________.16.若,不等式恒成立,则实数k的取值范围是________.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)化简下列各式:(Ⅰ);(Ⅱ).18.(12分)已知集合A是函数的定义域,.(Ⅰ)若,求;(Ⅱ)若,求实数a的取值范围.19.(12分)某地为响应习近平总书记关于生态文明建设的号召,大力开展“青山绿水”工程.为加强污染治理,某工厂产生的废气需经过过滤后排放,已知在过滤过程中废气中的污染物浓度P(单位:)与过滤时间t(单位:h)之间的函数关系式为(为初始浓度,k,均为正常数).假设过滤过程中废气的体积不变.(Ⅰ)若,求过滤2 h后污染物的浓度与初始浓度的比值是多少;(Ⅱ)若排放时污染物的浓度不超过初始浓度的4%,前4 h的过滤过程中污染物已经被过滤掉了80%,求至少还需要过滤多少小时才能排放.20.(12分)已知,且.(Ⅰ)证明:;(Ⅱ)证明:.21.(12分)已知函数.(Ⅰ)判断函数的奇偶性并加以证明;(Ⅱ)若关于x的不等式有解,求实数t的取值范围.22.(12分)已知二次函数满足,且.(Ⅰ)求的解析式;(Ⅱ)已知,讨论在上的最小值;(Ⅲ)若当时,不等式恒成立,求实数a的取值范围.
皖豫名校2022—2023学年(上)高一年级阶段性测试(二)数学·答案一、单项选择题:本题共8小题,每小题5分,共40分.1.答案 D解析 ,故.2.答案 A解析 不等式的解集是,可得,,则.3.答案 A解析 由,即,解得,则成立的充分不必要条件可以是.4.答案 C解析 因为函数,所以,所以,,.5.答案 B解析 ∵为幂函数,∴,∴,则的定义域为,并且在定义域上为增函数.由得解得.6.答案 C解析 由题可知的定义域为,,所以为奇函数,排除A,D.因为,排除B,故选C.7.答案 D解析 由,可得,,所以.因为的值域为,所以,可得,故.令,解得或.所以m最小为,n最大为3,则的最大值为4.8.答案 B解析 作出函数的大致图象如图所示.由可得.由图可知,方程有两个不等的实根,由题意可知,方程有且只有一个实根,故或,解得或.二、多项选择题:本题共4小题,每小题5分,共20分.每小题全部选对的得5分,部分选对的得2分,有选错的得0分.9.答案 ABD解析 对于A,,是减函数,所以A正确;对于B,可将命题改写为:,使得为质数,则命题为存在量词命题,所以B正确;对于C,,,所以C错误;对于D,命题p:,的否定是:,,所以D正确.10.答案 BC解析 对于A,若,令,,则,,,故A错误;对于B,显然,则,则,故B正确;对于C,因为,所以,所以,同理可得,即,故C正确;对于D,,因为,所以,,,故,即,故D错误.11.答案 BD解析 对于A,在上是增函数,当时,,故A错误;对于B,在上单调递增,当时,,故B正确;对于C,在上单调递减,当时,,故C错误;对于D,在上单调递增,当时,,故D正确.12.答案 BD解析 对于A,不等式即,又在上单调递减,所以,解得,A错误;对于B,由得,,又,所以,B正确;对于C,因为,所以,所以不存在,使得,C错误;对于D,,故是奇函数,其图象关于原点对称,D正确.三、填空题:本题共4小题,每小题5分,共20分.13.答案 解析 由题可知,.14.答案 解析 易知函数在上单调递增,且.即,所以,.15.答案 解析 由题可知,解得..∵,∴.∵的最小值为,∴,,即,得,即.16.答案 解析 不等式对任意恒成立,且,∴.当时,不等式恒成立等价于对于任意恒成立.令,则,由对勾函数性质易得在时,单调递增,故,∴,与矛盾,故此时k不存在.当时,不等式恒成立等价于对于任意恒成立,当时,显然成立,当时,不等式等价于对于任意恒成立,令,则,由对勾函数性质易得在时,单调递减,故,∴.综上,.四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.解 (Ⅰ)原式················································································(3分).··············································································(5分)(Ⅱ)原式················································································(7分).··············································································(10分)18.解 (Ⅰ)由题可知,即,解得,所以.··········································································(2分)若,则.·········································································(4分)所以.··········································································(6分)(Ⅱ)当,即时,,符合题意;·······················································(8分)当,即时,有解得.································································(10分)综上所述,实数a的取值范围为.······················································(12分)19.解(Ⅰ)过滤2 h后,,所以污染物的浓度与初始浓度的比值是.················································(4分)(Ⅱ)由题意知,前4 h消除了80%的污染物,又因为,所以,所以.·····································································(7分)设废气中污染物的浓度为初始浓度的4%时所需过滤时间为,由,即,得,所以,·······································································(10分)故至少还需过滤才能排放.···························································(12分)20.解 (Ⅰ)················································································(3分),当且仅当时取等号,所以.···························································(6分)(Ⅱ)由基本不等式可得,当且仅当,即时取等号,········································(8分)∴,同理,,由题可知上述三式等号不能同时成立.··················································(10分)∴,即原不等式得证.··································································(12分)21.解 (Ⅰ)函数为奇函数. (1分)证明如下:易知的定义域为,因为,··········································································(3分)所以为上的奇函数.································································(4分)(Ⅱ),是奇函数且在定义域上单调递增.···············································(5分)不等式有解即有解,由的奇偶性可知进一步等价于有解,由的单调性可知进一步等价于有解,即不等式有解.···································································(8分)因为,所以,,所以的取值范围是,································································(10分)所以,即,所以实数的取值范围是.····························································(12分)22.解 (Ⅰ)设,因为,所以,则··············································································(1分)因为,所以解得·········································································(3分)故.············································································(4分)(Ⅱ).当,即时,在上单调递减,所以;··········································································(6分)当且,即时,在上单调递减,在上单调递增,所以;··········································································(7分)当时,在上单调递增,所以.综上,当时,;当时,;当时,.······················································(8分)(Ⅲ)不等式可化简为.因为,所以.要使时,恒成立,显然时不可能.······················································(10分)当时,函数单调递增,故解得.综上可知,实数的取值范围为.·······················································(12分)
相关试卷
这是一份安徽省皖豫联盟2023-2024学年高二上学期期中数学试卷(Word版附解析),共18页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省皖豫2022-2023学年高二数学上学期阶段性测试(二)试卷(Word版附答案),共17页。试卷主要包含了已知抛物线C,已知空间中三点,,,则,已知曲线等内容,欢迎下载使用。
这是一份河南省皖豫2022-2023学年高二数学上学期阶段测试(一)试卷(Word版附解析),共19页。