终身会员
搜索
    上传资料 赚现金
    初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版)
    立即下载
    加入资料篮
    初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版)01
    初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版)02
    初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版)

    展开
    这是一份初中数学中考复习 精品解析:2022年浙江省湖州市中考数学真题(解析版),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省湖州市中考数学真题
    一、选择题
    1. ﹣5的相反数是(  )
    A. 5 B. ﹣5 C. D.
    【答案】A
    【解析】
    【分析】根据相反数的定义,即可求解.
    【详解】解:﹣5的相反数是5.
    故选:A.
    【点睛】本题主要考查了相反数的定义,熟练掌握只有符号不相同的两个数是相反数是解题的关键.
    2. 2022年3月23日下午,“天宫课堂”第2课在中国空间站开讲,神舟十三号乘组三位航天员翟志刚、王亚平、叶光富进行授课,某平台进行全程直播.某一时刻观看人数达到3790000人.用科学记数法表示3790000,正确的是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
    【详解】解:3790000=3.79×106.
    故答案为:B.
    【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.
    3. 如图是由四个相同的小正方体组成的几何体,它的主视图是( )


    A. B. C. D.
    【答案】D
    【解析】
    【分析】主视图就是从主视方向看到的正面的图形,也可以理解为该物体的正投影,据此求解即可.
    【详解】解:观察该几何体发现:从正面看到的应该是三个正方形,上面左边1个,下面2个,
    故选:D.
    【点睛】本题考查了简单组合体的三视图,解题的关键是了解主视图的定义,属于基础题,难度不大.
    4. 统计一名射击运动员在某次训练中10次射击的中靶环数,获得如下数据:7,8,10,9,9,8,10,9,9,10.这组数据的众数是( )
    A. 7 B. 8 C. 9 D. 10
    【答案】C
    【解析】
    【分析】根据众数的定义求解.
    【详解】解:在这一组数据中9出现了4次,次数是最多的,
    故众数是9;
    故选:C.
    【点睛】本题考查了众数的意义.众数是一组数据中出现次数最多的数.
    5. 下列各式运算,结果正确的是( )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】根据合并同类项、同底数幂相乘、积的乘方分别计算,对各项进行判断即可.
    【详解】解:A、a2和a3不是同类项,不能合并,故该选项不符合题意;
    B、原计算错误,故该选项不符合题意;
    C、a3和a不是同类项,不能合并,故该选项不符合题意;
    D、正确,故该选项符合题意;
    故选:D.
    【点睛】本题考查了合并同类项、同底数幂相乘、积的乘方,掌握相关运算法则是解题的关键.
    6. 如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是( )


    A. 2cm B. 3cm C. 4cm D. 5cm
    【答案】C
    【解析】
    【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.
    【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,
    ∴BB′=CC′=1cm,
    ∵B′C=2cm,
    ∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).
    故选:C.
    【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.
    7. 把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )
    A. y=-3 B. y=+3 C. y= D. y=
    【答案】B
    【解析】
    【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.
    【详解】∵抛物线y=x2向上平移3个单位,
    ∴平移后的抛物线的解析式为:y=x2+3.
    故答案为:B.
    【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.
    8. 如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )


    A. 12 B. 9 C. 6 D.
    【答案】B
    【解析】
    【分析】根据三线合一可得,根据垂直平分线的性质可得,进而根据∠EBC=45°,可得为等腰直角三角形,根据斜边上的中线等于斜边的一半可得,然后根据三角形面积公式即可求解.
    【详解】解: AB=AC,AD是△ABC的角平分线,


    ∠EBC=45°,

    为等腰直角三角形,


    则△EBC的面积是.
    故选B.
    【点睛】本题考查了等腰三角形的性质与判定,垂直平分线的性质,直角三角形中斜边上的中线等于斜边的一半,掌握等腰三角形的性质与判定是解题的关键.
    9. 如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )

    A. BD=10 B. HG=2 C. D. GF⊥BC
    【答案】D
    【解析】
    【分析】根据矩形性质以及勾股定理即可判断A,根据折叠的性质即可求得,进而判断B,根据折叠的性质可得,进而判断C选项,根据勾股定理求得的长,根据平行线线段成比例,可判断D选项
    【详解】BD是矩形ABCD的对角线,AB=6,BC=8,


    故A选项正确,
    将△ABE沿BE翻折,将△DCF沿DF翻折,

    ,

    故B选项正确,
    ,

    ∴EG∥HF,
    故C正确
    设,则,





    ,同理可得




    不平行,
    即不垂直,
    故D不正确.
    故选D
    【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.
    10. 在每个小正方形边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连接PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是( )

    A. B. 6 C. D.
    【答案】C
    【解析】
    【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M、N作以点O为圆心,∠MON=90°的圆,则点P在所作的圆上,观察圆O所经过的格点,找出到点M距离最大的点即可求出.
    【详解】作线段MN中点Q,作MN的垂直平分线OQ,并使OQ=MN,以O为圆心,OM为半径作圆,如图,

    因为OQ为MN垂直平分线且OQ=MN,所以OQ=MQ=NQ,
    ∴∠OMQ=∠ONQ=45°,
    ∴∠MON=90°,
    所以弦MN所对的圆O的圆周角为45°,
    所以点P在圆O上,PM为圆O的弦,
    通过图像可知,当点P在位置时,恰好过格点且经过圆心O,
    所以此时最大,等于圆O的直径,
    ∵BM=4,BN=2,
    ∴,
    ∴MQ=OQ=,
    ∴OM=,
    ∴,
    故选 C.
    【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.
    二、填空题
    11. 当a=1时,分式的值是______.
    【答案】2
    【解析】
    【分析】直接把a的值代入计算即可.
    【详解】解:当a=1时,

    故答案为:2.
    【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可.
    12. “如果,那么”的逆命题是___________.
    【答案】如果,那么
    【解析】
    【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.
    【详解】解:“如果,那么”的逆命题是:
    “如果,那么”,
    故答案为:如果,那么.
    【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.
    13. 如图,已知在△ABC中,D,E分别是AB,AC上的点,,.若DE=2,则BC的长是______.


    【答案】6
    【解析】
    【分析】根据相似三角形性质可得,再根据DE=2,进而得到BC长.
    【详解】解:根据题意,
    ∵,
    ∴△ADE∽△ABC,
    ∴,
    ∵DE=2,
    ∴,
    ∴;
    故答案为:6.
    【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的性质进行计算.
    14. 一个不透明的箱子里放着分别标有数字1,2,3,4,5,6的六个球,它们除了数字外其余都相同.从这个箱子里随机摸出一个球,摸出的球上所标数字大于4的概率是______.
    【答案】
    【解析】
    【分析】根据概率的求法,用标有大于4的球的个数除以球的总个数即可得所标数字大于4的概率.
    【详解】解:∵箱子里放着分别标有数字1,2,3,4,5,6的六个球,
    ∴球上所标数字大于4的共有2个,
    ∴摸出的球上所标数字大于4的概率是:.
    故答案为:.
    【点睛】本题考查了概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    15. 如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD的度数是______.


    【答案】30°##30度
    【解析】
    【分析】根据垂径定理得出∠AOB=∠BOD,进而求出∠AOD=60°,再根据圆周角定理可得∠APD=∠AOD=30°.
    【详解】∵OC⊥AB,OD为直径,
    ∴,
    ∴∠AOB=∠BOD,
    ∵∠AOB=120°,
    ∴∠AOD=60°,
    ∴∠APD=∠AOD=30°,
    故答案为:30°.
    【点睛】本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.
    16. 如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,,以AB为边向上作正方形ABCD.若图像经过点C的反比例函数的解析式是,则图像经过点D的反比例函数的解析式是______.


    【答案】
    【解析】
    【分析】过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,设,,结合正方形的性质,全等三角形的判定和性质,得到≌≌,然后表示出点C和点D的坐标,求出,即可求出答案.
    【详解】解:过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,如图:


    ∵,
    设,,
    ∴点A为(,0),点B为(0,);
    ∵四边形ABCD是正方形,
    ∴,,
    ∴,
    ∴,
    同理可证:,
    ∵,
    ∴≌≌,
    ∴,,
    ∴,
    ∴点C的坐标为(,),点D的坐标为(,),
    ∵点C在函数的函数图像上,
    ∴,即;
    ∴,
    ∴经过点D的反比例函数解析式为;
    故答案为:.
    【点睛】本题考查了正方形的性质,全等三角形的判定和性质,反比例函数的性质,三角函数,余角的性质等知识,解题的关键是熟练掌握所学的知识,正确的表示出点C和点D的坐标,从而进行解题.
    三、解答题
    17. 计算:.
    【答案】0
    【解析】
    【分析】先算乘方,再算乘法和减法,即可.
    【详解】
    【点睛】本题考查实数的混合运算,关键是掌握.
    18. 如图,已知在Rt△ABC中,∠C=Rt∠,AB=5,BC=3.求AC的长和sinA的值.


    【答案】AC=4,sinA=
    【解析】
    【分析】根据勾股定理求出AC,根据正弦的定义计算,得到答案.
    【详解】解:∵∠C=Rt∠,AB=5,BC=3,
    ∴.

    【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.
    19. 解一元一次不等式组
    【答案】
    【解析】
    【分析】分别解出不等式①和②,再求两不等式解的公共部分,即可.
    【详解】解不等式①:
    解不等式②:
    ∴原不等式组的解是
    【点睛】本题考查解不等式组,注意最终结果要取不等式①和②的公共部分.
    20. 为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).


    根据统计图中的信息,解答下列问题:
    (1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数;
    (2)将条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
    (3)该校共有1600名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.
    【答案】(1)200人;36°
    (2)见解析 (3)400人
    【解析】
    【分析】(1)从两个统计图中可知,在抽查人数中,选择“体育运动”兴趣小组的人数为60人,占调查人数的30%,可求出调查人数,样本中选择“美工制作”兴趣小组占调查人数的,即10%,因此相应的圆心角的度数为360°的30%;
    (2)求出选择“音乐舞蹈”兴趣小组的人数,即可补全条形统计图;
    (3)用1600乘以样本中选择“爱心传递”兴趣小组的学生所占的百分比即可.
    【小问1详解】
    解:本次被抽查学生的总人数是(人),
    扇形统计图中表示选择“美工制作”兴趣小组的扇形的圆心角度数是;
    【小问2详解】
    解:选择“音乐舞蹈”兴趣小组的人数为200-50-60-20-40=30(人),
    补全条形统计图如图所示.

    【小问3详解】
    解:估计全校选择“爱心传递”兴趣小组的学生人数为(人).
    【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.
    21. 如图,已知在Rt△ABC中,,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作,垂足为F.

    (1)求证:;
    (2)若,,求AD的长.
    【答案】(1)见解析 (2)1
    【解析】
    【分析】(1)连接OE,根据已知条件和切线的性质证明四边形OFCE是矩形,再根据矩形的性质证明即可;
    (2)根据题意,结合(1)可知,再由直角三角形中“30°角所对的直角边是斜边的一般”的性质,可推导,最后由计算AD的长即可.
    【小问1详解】
    解:如图,连接OE,

    ∵AC切半圆O于点E,
    ∴OE⊥AC,
    ∵OF⊥BC,,
    ∴∠OEC=∠OFC=∠C=90°.
    ∴四边形OFCE是矩形,
    ∴OF=EC;
    【小问2详解】
    ∵,
    ∴,
    ∵,OE⊥AC,
    ∴,
    ∴.
    【点睛】本题主要考查了切线的性质、矩形的判定与性质以及含30°角的直角三角形性质等知识,正确作出辅助线并灵活运用相关性质是解题关键.
    22. 某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.

    (1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
    (2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
    (3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
    【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米
    (2)点B的坐标是,s=60t-60
    (3)小时
    【解析】
    【分析】(1)设轿车行驶的时间为x小时,则大巴行驶的时间为小时,根据路程两车行驶的路程相等得到即可求解;
    (2)由(1)中轿车行驶的时间求出点B的坐标是,进而求出直线AB的解析式;
    (3)根据大巴车行驶路程与小轿车行驶路程相等即可得到,进而求出a的值
    【小问1详解】
    解:设轿车行驶时间为x小时,则大巴行驶的时间为小时.
    根据题意,得:,
    解得x=2.
    则千米,
    ∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.
    【小问2详解】
    解:∵轿车追上大巴时,大巴行驶了3小时,
    ∴点B的坐标是.
    由题意,得点A的坐标为.
    设AB所在直线的解析式为,
    则:
    解得k=60,b=-60.
    ∴AB所在直线的解析式为s=60t-60.
    【小问3详解】
    解:由题意,得,
    解得:,
    故a的值为小时.
    【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.
    23. 如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.


    (1)①求点A,B,C的坐标;
    ②求b,c的值.
    (2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.
    【答案】(1)①A(3,0),B(3,3),C(0,3);②
    (2);
    【解析】
    【分析】(1)①根据坐标与图形的性质即可求解;②利用待定系数法求解即可;
    (2)证明Rt△ABP∽Rt△PCM,根据相似三角形的性质得到n关于m的二次函数,利用二次函数的性质即可求解.
    【小问1详解】
    解:①∵正方形OABC的边长为3,
    ∴点A,B,C的坐标分别为A(3,0),B(3,3),C(0,3);
    ②把点A(3,0),C(0,3)的坐标分别代入y=−x2+bx+c,
    得,解得;
    【小问2详解】
    解:由题意,得∠APB=90°-∠MPC=∠PMC,∠B=∠PCM=90°,
    ∴Rt△ABP∽Rt△PCM,
    ∴,即.
    整理,得,即.
    ∴当时,n的值最大,最大值是.
    【点睛】本题综合考查了正方形的性质,相似三角形的判定和性质,二次函数的性质,待定系数法求函数解析式,根据正方形的性质求出点A,B,C的坐标是解题的关键.
    24. 已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,.记△ABC的面积为S.

    (1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为,正方形BGFC的面积为.
    ①若,,求S的值;
    ②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:.
    (2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为,等边三角形CBE的面积为.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索与S之间的等量关系,并说明理由.
    【答案】(1)①6;②见解析
    (2),理由见解析
    【解析】
    【分析】(1)①将面积用a,b的代数式表示出来,计算,即可
    ②利用AN公共边,发现△FAN∽△ANB,利用,得到a,b的关系式,化简,变形,即可得结论
    (2)等边与等边共顶点B,形成手拉手模型,△ABC≌△FBE,利用全等的对应边,对应角,得到:AC=FE=b,∠FEB=∠ACB=90°,从而得到∠FEC=30°,再利用,,得到a与b的关系,从而得到结论
    【小问1详解】
    ∵,
    ∴b=3,a=4
    ∵∠ACB=90°

    ②由题意得:∠FAN=∠ANB=90°,
    ∵FH⊥AB
    ∴∠AFN=90°-∠FAH=∠NAB
    ∴△FAN∽△ANB

    ∴,
    得:
    ∴.

    【小问2详解】
    ,理由如下:
    ∵△ABF和△BEC都是等边三角形
    ∴AB=FB,∠ABC=60°-∠FBC=∠FBE,CB=EB
    ∴△ABC≌△FBE(SAS)
    ∴AC=FE=b
    ∠FEB=∠ACB=90°
    ∴∠FEC=30°
    ∵EF⊥CF,CE=BC=a



    由题意得:,


    【点睛】本题考查勾股定理,相似,手拉手模型,代数运算,本题难点是图二中的相似和图三中的手拉手全等
    相关试卷

    初中数学中考复习 精品解析:2022年浙江省舟山市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年浙江省舟山市中考数学真题(解析版),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 精品解析:2022年浙江省温州市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年浙江省温州市中考数学真题(解析版),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 精品解析:2022年浙江省台州市中考数学真题(解析版): 这是一份初中数学中考复习 精品解析:2022年浙江省台州市中考数学真题(解析版),共21页。试卷主要包含了全卷共4页,考试时间120分钟,本次考试不得使用计算器等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map