开学活动
搜索
    上传资料 赚现金

    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版)

    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版)第1页
    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版)第2页
    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版)

    展开

    这是一份2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题(解析版),共13页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
    2022-2023学年江苏省宿迁市沭阳县高一上学期期中数学试题 一、单选题1.已知集合,则A B C D【答案】C【分析】先求,再求【详解】由已知得,所以,故选C【点睛】本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.2的(    )条件A.充分且不必要 B.必要且不充分 C.充要 D.既不充分又不必要【答案】A【分析】解不等式得到,根据范围大小关系得到答案.【详解】,得,而的充分不必要条件.故选:A3.设,关于的不等式的解集是,则的值为(    A B C D1【答案】D【分析】根据题意得到,解方程代入计算即可.【详解】关于的不等式的解集是,故,故..故选:D4.命题,若命题是假命题,则的最小值为(    A2 B3 C6 D9【答案】D【分析】依题意可得命题为真命题,参变分离可得恒成立,则,求出参数的取值范围,即可得解.【详解】解:因为命题为假命题,则命题为真命题,所以恒成立,所以,即,所以的最小值为.故选:D5.列车从地出发直达外的地,途中要经过离地,假设列车匀速前进,后从地到达地,则列车与地距离(单位:)与行驶时间(单位:)的函数图象为(    A BC D【答案】C【分析】根据列车运行的方式确定正确答案.【详解】依题意,速度所以从用时,此时所以C选项正确,ABD选项错误.故选:C6.已知不等式的解集为空集,则实数a的取值范围是(    A BC D【答案】B【分析】利用求得实数a的取值范围.【详解】因为不等式的解集为空集,所以,即故选:B.7.已知,则的值为(    A4 B C5 D【答案】B【分析】根据题意,再变换,代入数据得到答案.【详解】,故,故.故选:B8.定义在上的函数满足),且,则不等式的解集为(    A B C D【答案】A【分析】通过构造函数法,结合函数的单调性求得不等式的解集.【详解】构造函数任取由于,所以所以所以上递减.,所以所以不等式的解集为.故选:A 二、多选题9.图中阴影部分所表示的集合是(    A BC D【答案】AC【分析】根据交并补的计算和韦恩图判断即可.【详解】A选项:,则,故A正确;B选项:,则,故B错;C选项:,故C正确;D选项:,故D.故选:AC.10.下列命题中,正确的有(    A.若,则 B.若C.若,则 D.若【答案】ABD【分析】根据不等式的性质知AB正确,举反例,得到C错误,根据不等式性质证明D正确,得到答案.【详解】,则A正确;,即,则B正确;,满足若,则C错误;,则,即,故D正确.故选:ABD11.已知函数,下列说法中正确的有(    AB.函数单调减区间为C.若,则的取值范围是D.若方程有三个解,则的取值范围是【答案】ACD【分析】直接计算得到A正确,根据函数图像得到B错误,D正确,考虑两种情况,计算得到答案.【详解】A正确;画出函数图像,根据图像知函数单调减区间为B错误;时,,解得;当时,,解得,故C正确;,方程有三个解,根据图像知,D正确.故选:ACD   12.已知是定义在上的偶函数,且在上单调递增,对于任意实数恒成立,则的可能取值是(    A0 B1 C2 D3【答案】BCD【分析】根据题意,结合函数的奇偶性与单调性分析可得,即;令,由基本不等式的性质分析可得的最大值,结合题意分析可得的最小值,进而计算可得答案.【详解】根据题意,函数是定义在上的偶函数,则又由函数上单调递增,,即,即求的最大值,时,时,时成立)恒成立,则必有成立,故选: 三、填空题13.函数的定义域为_________.【答案】【分析】由二次根式的被开方数非负,且分式的分母不为零,可求出函数的定义域【详解】由题意得,解得所以函数的定义域为故答案为:14.已知函数是定义在上的偶函数,且当时,,则___________.【答案】【分析】直接根据函数奇偶性的性质计算得到答案.【详解】函数是定义在上的偶函数,当时,.故答案为:15.若函数满足,且上单调递增,则实数的取值范围为___________.【答案】【分析】根据代入化简得到,得到函数解析式,确定函数的单调区间,再计算得到答案.【详解】,故,展开得到,故.,故函数在上单调递减,在上单调递增.上单调递增,故.故答案为:. 四、双空题16.已知,且,则的最大值为___________的最小值为___________.【答案】     ##0.5     4【分析】根据基本的不等式直接应用即可得的最大值,利用“1”的代换可求的最小值.【详解】解:,且,所以,所以当且仅当,即时等号成立,所以的最大值为,当且仅当,即时等号成立,所以的最小值为4.故答案为:4. 五、解答题17.已知集合(1)时,求(2)___________,求实数的取值范围.②“的充分条件;这三个条件中任选一个,补充到本题第(2)问的横线处,并按照你的选择求解问题(2.(注:答题前先说明选择哪个条件,如果选择多个条件解答,按第一个解答计分).【答案】(1)(2) 【分析】1)根据并集的定义计算可得;2)根据所选条件均可得到,可判断,即可得到不等式组,解得即可.【详解】1)解:当,又所以2)解:若选,则显然,即所以,解得,即若选② “的充分条件,则显然,即所以,解得,即若选,则显然,即所以,解得,即18.计算下列各式的值:(1)(2)【答案】(1)(2) 【分析】1)根据根式、指数运算求得正确答案.2)根据对数运算求得正确答案.【详解】1.2.19.已知函数为奇函数.(1)求实数的值;(2)求证:在区间上是增函数.【答案】(1)0(2)证明见解析 【分析】1)利用特殊值,可求得的值,然后验证可得;2)利用单调性的定义证明可得;【详解】1)解:因为为奇函数,且定义域为所以,即,解得又当时,,所以满足题意,即的值为.2)证明:设,且时,从而,即所以在区间上是增函数.20.佩戴口罩能起到一定预防新冠肺炎的作用,某科技企业为了满足口罩的需求,决定开发生产口罩的新机器.生产这种机器的月固定成本为万元,每生产台,另需投入成本(万元),当月产量不足台时,(万元);当月产量不小于台时,(万元).若每台机器售价万元,且当月生产的机器能全部卖完.1)求月利润(万元)关于月产量(台)的函数关系式;2)月产量为多少台时,该企业能获得最大月利润?并求出其利润.【答案】1;(2)当月产量为80台时,该企业能获得最大月利润,其利润为1500万元.【分析】1)由给定函数模型结合即可得解;2)分段讨论,结合二次函数的性质及基本不等式即可得解.【详解】解:(1)当时,时,2)当时,时,取最大值1200万元;时,当且仅当时取等号;所以当月产量为80台时,该企业能获得最大月利润,其利润为1500万元.答:当月产量为80台时,该企业能获得最大月利润,其利润为1500万元.21.已知函数(1)求函数的解析式;(2)求函数的最小值.【答案】(1)(2)见解析. 【分析】1)利用换元法求解析式即可;2)分类讨论三种情况下上的单调性,根据单调性求最小值即可.【详解】1)令,则.2)由(1)知函数的图像开口向上,对称轴为时,则函数上递增时,则函数上递减,在上递增,时,则函数上递减,22.已知定义在上的函数,满足对任意的,都有.时,,且.(1)的值;(2)判断并证明函数上的奇偶性;(3)解不等式.【答案】(1)(2)是奇函数,证明详见解析;(3). 【分析】1)利用赋值法求得正确答案.2)利用赋值法,结合函数奇偶性的定义求得正确答案.3)利用函数的单调性求得不等式的解集.【详解】1)由.2是奇函数,证明如下:,得所以是奇函数.3)任取由于,所以所以所以是减函数,所以不等式所以所以不等式的解集为. 

    相关试卷

    2023-2024学年江苏省宿迁市沭阳县高一上学期期中数学试题含答案:

    这是一份2023-2024学年江苏省宿迁市沭阳县高一上学期期中数学试题含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题,证明题等内容,欢迎下载使用。

    江苏省宿迁市沭阳县2023-2024学年高一上学期期中数学试题:

    这是一份江苏省宿迁市沭阳县2023-2024学年高一上学期期中数学试题,共7页。

    2022-2023学年江苏省宿迁市泗阳县高一上学期11月期中数学试题(解析版):

    这是一份2022-2023学年江苏省宿迁市泗阳县高一上学期11月期中数学试题(解析版),共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map