初中数学中考复习 考点28 正方形(解析版)
展开
这是一份初中数学中考复习 考点28 正方形(解析版),共28页。
在中考中,正方形主要在选择题,填空题,解答题考查为主,并结合相似,锐角三角函数结合考查,;其中正方形常考4种模型是中考中的重难点。
【中考考查重点】
正方形的性质及判定
二、正方形常考模型
考点:正方形性质及判定
一、正方形的概念和性质
1.概念:有一组邻边相等,并且有一个角是直角的平行四边形是正方形.
2.性质:
(1)具有平行四边形、矩形、菱形的一切性质
(2)正方形的四个角都是直角,四条边都相等
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形是轴对称图形,有4条对称轴
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
二、正方形的判定
判定方法:
(1)有一个角是直角的菱形是正方形;
(2)对角线相等的菱形是正方形;
(3)对角线互相垂直的矩形是正方形。
注意:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
1.(2020秋•法库县期末)平行四边形、矩形、菱形、正方形共有的性质是( )
A.对角线互相平分B.对角线相等
C.对角线互相垂直D.对角线互相垂直平分
【答案】A
【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;
B、只有矩形,正方形的对角线相等,故本选项错误;
C、只有菱形,正方形的对角线互相垂直,故本选项错误;
D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.
故选:A.
2.(2020秋•武功县期末)如图,在正方形ABCD中,AB=2,P是AD边上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )
A.4B.2C.D.2
【答案】C
【解答】解:在正方形ABCD中,OA⊥OB,∠OAD=45°,
∵PE⊥AC,PF⊥BD,
∴四边形OEPF为矩形,△AEP是等腰直角三角形,
∴PF=OE,PE=AE,
∴PE+PF=AE+OE=OA,
∵正方形ABCD的边长为2,
∴OA=AC==.
故选:C.
3.(2010秋•金口河区期末)如图,在正方形ABCD中,E是DC上一点,F为BC延长线上一点,∠BEC=70°,且△BCE≌△DCF.连接EF,则∠EFD的度数是( )
A.10°B.15°C.20°D.25°
【答案】D
【解答】解:∵四边形ABCD是正方形,
∴∠BCE=∠DCF=90°;
由旋转的性质知:CE=CF,∠BEC=∠DFC=70°;
则△ECF是等腰直角三角形,得∠EFC=45°,
∴∠EFD=∠DFC﹣∠EFC=25°.
故选:D.
4.(2020春•沙坪坝区期末)如图,正方形ABCD中,AB=,点E是对角线AC上一点,EF⊥AB于点F,连接DE,当∠ADE=22.5°时,EF的长是( )
A.1B.2﹣2C.﹣1D.
【答案】C
【解答】解:∵四边形ABCD是正方形,
∴AB=CD=BC=,∠B=∠ADC=90°,∠BAC=∠CAD=45°,
∴AC=AB=2,
∵∠ADE=22.5°,
∴∠CDE=90°﹣22.5°=67.5°,
∵∠CED=∠CAD+∠ADE=45°+22.5°=67.5°,
∴∠CDE=∠CED,
∴CD=CE=,
∴AE=2﹣,
∵EF⊥AB,
∴∠AFE=90°,
∴△AFE是等腰直角三角形,
∴EF==﹣1,
故选:C.
5.(2021•罗湖区校级模拟)如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是( )
A.20B.16C.34D.25
【答案】C
【解答】解:作BM⊥x轴于M.
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,
∴∠DAO=∠ABM,
∵∠AOD=∠AMB=90°,
∴在△DAO和△ABM中,
∴△DAO≌△ABM(AAS),
∴OA=BM,AM=OD,
∵A(﹣3,0),B(2,b),
∴OA=3,OM=2,
∴OD=AM=5,
∴AD==,
∴正方形ABCD的面积=34,
故选:C.
6.(2020春•老城区校级月考)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列四个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中正确结论个数是( )
A.1B.2C.3D.4
【答案】C
【解答】解:如图,连接PC,延长AP交EF于H,延长FP交AB于G,
在正方形ABCD中,∠ABP=∠CBP=45°,AB=CB,
∵在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴AP=PC,∠BAP=∠BCP,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF是矩形,
∴PC=EF,∠BCP=∠PFE,
∴AP=EF,∠PFE=∠BAP,故①④正确;
只有点P为BD的中点或PD=AD时,△APD是等腰三角形,故③错误;
∵PF∥BC,
∴∠AGF=∠ABC=90°,
∵∠BAP=∠PFE,∠APG=∠FPH,
∴∠AGP=∠AHF=90°,
∴AP⊥EF,故②正确,
故选:C.
7.(2021秋•南海区月考)如图,点B在MN上,过AB的中点O作MN的平行线,分别交∠ABM的平分线和∠ABN的平分线于点C、D.
(1)试判断四边形ACBD的形状,并证明你的结论.
(2)当△CBD满足什么条件时,四边形ACBD是正方形?并给出证明.
【答案】(1)四边形ACBD是矩形
(2)△CBD满足CB=BD时,四边形ACBD是正方形
【解答】解:(1)四边形ACBD是矩形,
证明:∵CD平行MN,
∴∠OCB=∠CBM,
∵BC平分∠ABM,
∴∠OBC=∠CBM,
∴∠OCB=∠OBC,
∴OC=OB,
同理可证:OB=OD,
∴OA=OB=OC=OD,
∵CD=OC+OD,
AB=OA+OB,
∴AB=CD,
∴四边形ACBD是矩形;
(2)△CBD满足CB=BD时,四边形ACBD是正方形,
证明:由(1)得四边形ACBD是矩形,
∵CB=BD,
∴四边形ACBD是正方形.
1.(2021秋•武侯区期末)下列说法中,是正方形具有而矩形不具有的性质是( )
A.两组对边分别平行B.对角线互相垂直
C.四个角都为直角D.对角线互相平分
【答案】B
【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,
所以正方形具有而矩形不具有的性质是对角线互相垂直.
故选:B.
2.(2017春•柳州期末)边长为4的正方形ABCD中,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为( )
A.2B.4C.2D.6
【答案】A
【解答】解:如图,
∵四边形ABCD为正方形,
∴∠CAD=∠BDA=45°,
∵PE⊥AC于点E,PF⊥BD于点F,
∴△APE和△PDF为等腰直角三角形,
∴PE=AP,PF=PD,
∴PE+PF=(AP+PD)=×4=2.
故选:A.
3.(2021秋•普宁市期末)下列说法中正确的是( )
A.矩形的对角线平分每组对角
B.菱形的对角线相等且互相垂直
C.有一组邻边相等的矩形是正方形
D.对角线互相垂直的四边形是菱形
【答案】C
【解答】解:A、矩形的对角线平分每组对角,说法错误,故本选项不符合题意;
B、菱形的对角线互相垂直,故本选项不符合题意;
C、有一组邻边相等的矩形是正方形,正确,故本选项符合题意;
D、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意.
故选:C.
4.(2020•眉山)下列说法正确的是( )
A.一组对边平行另一组对边相等的四边形是平行四边形
B.对角线互相垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
【答案】B
【解答】解:A、一组对边平行另一组对边相等的四边形可以是等腰梯形,可以是平行四边形,故选项A不合题意;
B、对角线互相垂直平分的四边形是菱形,故选项B符合题意;
C、对角线相等的平行四边形是矩形,故选项C不合题意;
D、对角线互相垂直平分且相等的四边形是正方形,故选项D不合题意;
故选:B.
5.(2021秋•海州区期末)如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接DE,若AB=10,AE=3,则ED的长度为( )
A.7B.2C.D.
【答案】C
【解答】解:如图,连接BE,
∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°,AB=AD,
∵AE=AE,
∴△ABE≌△ADE(SAS),
∴BE=DE,
∵EF⊥AB于点F,AE=3,
∴AF=EF=3,
∵AB=10,
∴BF=7,
∴BE==,
∴ED=.
故选:C.
6.(2021秋•铁锋区期末)如图,已知在正方形ABCD中,AB=BC=CD=AD=10厘米,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动,设运动时间为t秒.当△BPE与△CQP全等时,t的值为( )
A.2B.2或1.5C.2.5D.2.5或2
【答案】D
【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
∵AB=BC=10厘米,AE=4厘米,
∴BE=CP=6厘米,
∴BP=10﹣6=4厘米,
∴运动时间=4÷2=2(秒);
当点Q的运动速度与点P的运动速度不相等,
∴BP≠CQ,
∵∠B=∠C=90°,
∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
∴点P,Q运动的时间t==(秒),
故选:D.
7.(2021春•海淀区校级期末)如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长;
(3)当AF的长为多少时,四边形BFEG是正方形?
【答案】(1)略(2)20cm (3)AF=5cm
【解答】解:(1)证明:∵四边形ABCD为正方形,
∴AB⊥BC,∠B=90°.
∵EF⊥AB,EG⊥BC,
∴∠BFE=90°,∠BGE=90°.
又∵∠B=90°,
∴四边形BFEG是矩形;
(2)∵正方形ABCD的周长是40cm,
∴AB=40÷4=10cm.
∵四边形ABCD为正方形,
∴△AEF为等腰直角三角形,
∴AF=EF,
∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.
(3)若要四边形BFEG是正方形,只需EF=BF,
∵AF=EF,AB=10cm,
∴当AF=5cm时,四边形BFEG是正方形.
1.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:
a.两组对边分别相等
b.一组对边平行且相等
c.一组邻边相等
d.一个角是直角
顺次添加的条件:①a→c→d②b→d→c③a→b→c
则正确的是( )
A.仅①B.仅③C.①②D.②③
【答案】C
【解答】解:①由a得到两组对边分别相等的四边形是平行四边形,添加c即一组邻边相等的平行四边形是菱形,再添加d即一个角是直角的菱形是正方形,故①正确;
②由b得到一组对边平行且相等的四边形是平行四边形,添加d即有一个角是直角的平行四边形是矩形,再添加c即一组邻边相等的矩形是正方形,故②正确;
③由a得到两组对边分别相等的四边形是平行四边形,添加b得到一组对边平行且相等的平行四边形仍是平行四边形,再添加c即一组邻边相等的平行四边形是菱形,不能得到四边形是正方形,故③不正确;
故选:C.
2.(2019•毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )
A.B.3C.D.5
【答案】B
【解答】解:∵四边形ABCD是正方形,
∴∠B=90°,
∴BC2=EC2﹣EB2=22﹣12=3,
∴正方形ABCD的面积=BC2=3.
故选:B.
3.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )
A.1B.C.2D.2
【答案】C
【解答】解:∵四边形ABCD是正方形,
∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,
∴∠DON+∠CON=90°,
∵ON⊥OM,
∴∠MON=90°,
∴∠DON+∠DOM=90°,
∴∠DOM=∠CON,
在△DOM和△CON中,
,
∴△DOM≌△CON(ASA),
∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,
∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,
∴△DOC的面积是1,
∴正方形ABCD的面积是4,
∴AB2=4,
∴AB=2,
故选:C.
4.(2021•湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
【答案】C
【解答】解:①连接BE,交FG于点O,如图,
∵EF⊥AB,EG⊥BC,
∴∠EFB=∠EGB=90°.
∵∠ABC=90°,
∴四边形EFBG为矩形.
∴FG=BE,OB=OF=OE=OG.
∵四边形ABCD为正方形,
∴AB=AD,∠BAC=∠DAC=45°.
在△ABE和△ADE中,
,
∴△ABE≌△ADE(SAS).
∴BE=DE.
∴DE=FG.
∴①正确;
②延长DE,交FG于M,交FB于点H,∵△ABE≌△ADE,
∴∠ABE=∠ADE.
由①知:OB=OF,
∴∠OFB=∠ABE.
∴∠OFB=∠ADE.
∵∠BAD=90°,
∴∠ADE+∠AHD=90°.
∴∠OFB+∠AHD=90°.
即:∠FMH=90°,
∴DE⊥FG.
∴②正确;
③由②知:∠OFB=∠ADE.
即:∠BFG=∠ADE.
∴③正确;
④∵点E为AC上一动点,
∴根据垂线段最短,当DE⊥AC时,DE最小.
∵AD=CD=4,∠ADC=90°,
∴AC=.
∴DE=AC=2.
由①知:FG=DE,
∴FG的最小值为2,
∴④错误.
综上,正确的结论为:①②③.
故选:C.
5.(2020•陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为 .
【答案】4
【解答】解:如图,连接AC,BD交于点H,过点O和点H的直线MN平分该组合图形的面积,交AD于S,取AE中点P,取AB中点Q,连接OP,HQ,过点O作OT⊥QH于T,
∵四边形ABCD是矩形,
∴AH=HC,
又∵Q是AB中点,
∴QH=BC=4,QH∥BC,AQ=BQ=2,
同理可求PO=AG=2,PO∥AG,EP=AP=2,
∴PO∥AD∥BC∥EF∥QH,EP=AP=AQ=BQ,
∴MO=OS=SH=NH,∠OPQ=∠PQH=90°,
∵OT⊥QH,
∴四边形POTQ是矩形,
∴PO=QT=2,OT=PQ=4,
∴TH=2,
∴OH===2,
∴MN=2OH=4,
故答案为:4.
6.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.
(1)证明:△ADE≌△CBF.
(2)若AB=4,AE=2,求四边形BEDF的周长.
【答案】(1) 略 (2)8
【解答】(1)证明:由正方形对角线平分每一组对角可知:∠DAE=∠BCF=45°,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS).
(2)解:∵AB=AD=,
∴BD===8,
由正方形对角线相等且互相垂直平分可得:AC=BD=8,DO=BO=4,OA=OC=4,
又AE=CF=2,
∴OA﹣AE=OC﹣CF,
即OE=OF=4﹣2=2,
故四边形BEDF为菱形.
∵∠DOE=90°,
∴DE===2.
∴4DE=,
故四边形BEDF的周长为8.
1.(2021•云岩区模拟)数学老师用四根长度相等的木条首尾顺次相接制成一个图1所示的菱形教具,此时测得∠D=60°,对角线AC长为16cm,改变教具的形状成为图2所示的正方形,则正方形的边长为( )
A.8cmB.4cmC.16cmD.16cm
【答案】C
【解答】解:如图1,图2中,连接AC.
图1中,∵四边形ABCD是菱形,
∴AD=DC,
∵∠D=60°,
∴△ADC是等边三角形,
∴AD=DC=AC=16cm,
∴正方形ABCD的边长为16cm,
故选:C.
2.(2021•石家庄一模)将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,MN,甲、乙两人有如下结论:
甲:若四边形ABCD为正方形,则四边形PQMN必是正方形;
乙:若四边形PQMN为正方形,则四边形ABCD必是正方形.
下列判断正确的是( )
A.甲正确,乙不正确B.甲不正确,乙正确
C.甲、乙都不正确D.甲、乙都正确
【答案】B
【解答】解:若ABCD是正方形,可设AB=BC=CD=AD=x,
∴AQ=4﹣x,AP=3+x,
∴PQ2=AQ2+AP2,
即PQ===,
x取值不同则PQ的长度不同,
∴甲不正确,
若四边形PQMN为正方形,则PQ=PN=MN=MQ=5,且∠QMD+∠MQD=∠QAP=∠AQP+∠QPA=90°,
在△QMD和△PQA中,
,
∴△QMD≌△PQA(ASA),
∴QD=AP,
同理QD=AP=MC=BN,
又∵BP=MD=AQ,
∴QD﹣AD=PA﹣AB,
∴AB=AD,
同理AB=CD=AD=BC,
即四边形ABCD为菱形,
∵∠DAB=180°﹣∠QAP=90°,
则四边形ABCD为正方形,
∴乙正确,
故选:B.
3.(2021•临沂模拟)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是( )
A.②③B.②④C.①③④D.②③④
【答案】D
【解答】解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;
∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
在△AED和△AFD中,,
∴△AED≌△AFD(AAS),
∴AE=AF,DE=DF,
∴AE+DF=AF+DE,故④正确;
∵在△AEO和△AFO中,,
∴△AEO≌△AFO(SAS),
∴EO=FO,
又∵AE=AF,
∴AO是EF的中垂线,
∴AD⊥EF,故②正确;
∵当∠A=90°时,四边形AEDF的四个角都是直角,
∴四边形AEDF是矩形,
又∵DE=DF,
∴四边形AEDF是正方形,故③正确.
综上可得:正确的是:②③④,
故选:D.
4.(2020•宁津县一模)下列说法正确的是( )
A.对角线相等且相互平分的四边形是矩形
B.对角线相等且相互垂直的四边形是菱形
C.四条边相等的四边形是正方形
D.对角线相互垂直的四边形是平行四边形
【答案】A
【解答】解:A、对角线相等且相互平分的四边形是矩形,故该选项正确;
B、对角线相等且相互垂直的四边形不一定是菱形,故该选项错误;
C、四条边相等的四边形是菱形,不是正方形,故该选项错误;
D、对角线相互垂直的四边形不是平行四边形,故该选项错误,
故选:A.
5.(2021•南浔区模拟)如图,E,F是正方形ABCD的边BC上两个动点,BE=CF.连接AE,BD交于点G,连接CG,DF交于点M.若正方形的边长为1,则线段BM的最小值是( )
A.B.C.D.
【答案】D
【解答】解:如图,在正方形ABCD中,AB=AD=CB,∠EBA=∠FCD,∠ABG=∠CBG,
在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS),
∴∠BAE=∠CDF,
在△ABG和△CBG中,
,
∴△ABG≌△CBG(SAS),
∴∠BAG=∠BCG,
∴∠CDF=∠BCG,
∵∠DCM+∠BCG=∠FCD=90°,
∴∠CDF+∠DCM=90°,
∴∠DMC=180°﹣90°=90°,
取CD的中点O,连接OB、OF,
则OF=CO=CD=,
在Rt△BOC中,OB===,
根据三角形的三边关系,OM+BM>OB,
∴当O、M、B三点共线时,BM的长度最小,
∴BM的最小值=OB﹣OF==.
故选:D.
6.(2021•平凉模拟)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:BM=CM.
(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.
【答案】(1)略 (2)当AB:AD=1:2时,四边形MENF是正方形
【解答】(1)证明:∵四边形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵M为AD中点,
∴AM=DM,
在△ABM和△DCM中,
,
∴△ABM≌△DCM(SAS),
∴BM=CM;
(2)解:当AB:AD=1:2时,四边形MENF是正方形,理由如下:
∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=CM,
∵MF=CM,
∴NE=FM,
∵NE∥FM,
∴四边形MENF是平行四边形,
由(1)知△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形;
∵M为AD中点,
∴AD=2AM,
∵AB:AD=1:2,
∴AD=2AB,
∴AM=AB,
∵∠A=90°,
∴∠ABM=∠AMB=45°,
同理∠DMC=45°,
∴∠EMF=180°﹣45°﹣45°=90°,
∵四边形MENF是菱形,
∴菱形MENF是正方形.
7.(2021•沂水县二模)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上的点.
(1)当点M是CE与BD的交点时,如图1,求∠DMC的度数;
(2)若点M是BD上任意一点时,将BM绕点B逆时针旋转60°得到BN,连接EN,CM,求证:EN=CM;
(3)当点M在何处时,BM+2CM的值最小,说明理由.
【答案】(1)60° (2)略 (3)当M点位于BD,CE交点时,BM+2CM的值最小
【解答】(1)解:∵△AEB是等边三角形,
∴EB=AB=AE,∠EBA=60°,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴EB=CB,∠EBC=∠EBA+∠ABC=60°+90°=150°,
∴∠BCE=(180°﹣∠EBC)=×(180°﹣150°)=15°,
∵BD是正方形ABCD的对角线,
∴∠DBC=45°,
∵∠DMC是△BMC的外角,
∴∠DMC=∠DBC+∠BCE=45°+15°=60°;
(2)证明:由旋转可知,BM=BN,∠MBN=60°,
∵∠MBA=45°,
∴∠ABN=∠MBN﹣∠MBA=15°,
∵∠ABE=60°,
∴∠NBE=∠ABE﹣∠ABN=45°,
在△BMC和△BNE中,
,
∴△BMC≌△BNE(SAS),
∴CM=EN;
(3)当M点位于BD,CE交点时,BM+2CM的值最小,理由如下:
在△ADM和△CDM中,
,
∴△ADM≌△CDM(SAS),
∴AM=CM,
将BM绕点B旋转60°,得到BN,
∵∠EBN+∠NBA=60°,∠NBA+∠ABM=60°,
∴∠EBN=∠ABM,
在△ENB和△AMB中,
,
∴△ENB≌△AMB(SAS),
∴AM=EN,
∵BM=BN,∠NBM=60°,
∴△BMN是等边三角形,
∴BM=NM,
∴BM+2CM=BM+AM+CM=MN+EN+CM=EN+MN+CM,
即E,N,M,C四点共线时,有最小值.
8.(2022•南昌模拟)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.
(1)如图1,连接BG、CF,
①求的值;
②求∠BHC的度数.
(2)当正方形AEFG旋转至图2位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN,猜想MN与BE的数量关系与位置关系,并说明理由.
【答案】(1)①= ②45°(2)BE=2MN,MN⊥BE
【解答】解:(1)①如图1,连接AF,AC,
∵四边形ABCD和四边形AEFG都是正方形,
∴AC=AB,AF=AG,∠CAB=∠GAF=45°,∠BAD=90°,
∴∠CAF=∠BAG,,
∴△CAF∽△BAG,
∴=;
②∵AC是正方形BCD的对角线,
∴∠ABC=90°,∠ACB=45°,
在△BCH中,∠BHC=180°﹣(∠HBC+∠HCB)
=180°﹣(∠HBC+∠ACB+∠ACF)
=180°﹣(∠HBC+∠ACB+∠ABG)
=180°﹣(∠ABC+∠ACB)
=45°;
(2)BE=2MN,MN⊥BE,
理由如下:如图2,连接ME,过点C作CQ∥EF,交直线ME于Q,连接BH,设CF与AD交点为P,CF与AG交点为R,
∵CQ∥EF,
∴∠FCQ=∠CFE,
∵点M是CF的中点,
∴CM=MF,
又∵∠CMQ=∠FME,
∴△CMQ≌△FME(ASA),
∴CQ=EF,ME=QM,
∴AE=CQ,
∵CQ∥EF,AG∥EF,
∴CQ∥AG,
∴∠QCF=∠CRA,
∵AD∥BC,
∴∠BCF=∠APR,
∴∠BCQ=∠BCF+∠QCF=∠APR+∠ARC,
∵∠DAG+∠APR+∠ARC=180°,∠BAE+∠DAG=180°,
∴∠BAE=∠BCQ,
又∵BC=AB,CQ=AE,
∴△BCQ≌△BAE(SAS),
∴BQ=BE,∠CBQ=∠ABE,
∴∠QBE=∠CBA=90°,
∵MQ=ME,点N是BE中点,
∴BQ=2MN,MN∥BQ,
∴BE=2MN,MN⊥BE.
相关试卷
这是一份(通用版)中考数学总复习考点25 正方形(含解析),共37页。试卷主要包含了正方形定义,正方形的性质,正方形的判定,正方形的面积,,则点F的坐标为 等内容,欢迎下载使用。
这是一份中考数学一轮复习知识点梳理+练习考点28 正方形(含解析),共1页。
这是一份(通用版)中考数学一轮复习考点练习28 正方形(教师版),共1页。