所属成套资源:高一数学同步课件 同步练习(2019人教A版必修第二册)
数学必修 第二册7.2 复数的四则运算同步达标检测题
展开
这是一份数学必修 第二册7.2 复数的四则运算同步达标检测题,共4页。
课时跟踪检测 (十七) 复数的乘、除运算层级(一) “四基”落实练1.若z=4+3i,则等于 ( )A.1 B.-1C.+i D.-i解析:选D 因为z=4+3i,|z|=5,所以=4-3i,||=|z|=5,所以=-i.2.= ( )A.1+2i B.1-2iC.2+i D.2-i解析:选D ===2-i.故选D.3.复数(i为虚数单位)的共轭复数是 ( )A.1+i B.1-iC.-1+i D.-1-i解析:选B ∵===1+i,∴其共轭复数为1-i.4.若a为实数,且(2+ai)(a-2i)=-4i,则a= ( )A.-1 B.0C.1 D.2解析:选B 因为a为实数,且(2+ai)(a-2i)=4a+(a2-4)i=-4i,得4a=0且a2-4=-4,解得a=0,故选B.5.若复数z满足(2+i)z=|3-4i|,则z在复平面内对应的点位于 ( )A.第一象限 B.第二象限C.第三象限 D.第四象限解析:选D ∵(2+i)z=|3-4i|==5,∴z===2-i,z在复平面内对应的点为(2,-1),在第四象限,故选D.6.(2019·江苏高考)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.解析:(a+2i)(1+i)=a-2+(a+2)i,因为实部为0,所以a-2=0,即a=2.答案:27.(2019·浙江高考)复数z=(i为虚数单位),则|z|=________.解析:∵z====-i,∴|z|= =.答案:8.若z1=a+2i,z2=3-4i,且为纯虚数,则实数a的值为________.解析:===,根据已知条件可知3a-8=0,解得a=.答案:9.已知为z的共轭复数,若z·-3i=1+3i,求z.解:设z=a+bi(a,b∈R),则=a-bi(a,b∈R),由题意得(a+bi)(a-bi)-3i(a-bi)=1+3i,即a2+b2-3b-3ai=1+3i,则有解得或所以z=-1或z=-1+3i. 层级(二) 能力提升练1.(多选)已知i为虚数单位,则下列结论正确的是 ( )A.复数z=的虚部为B.复数z=的共轭复数=-5-2iC.复数z=-i在复平面内对应的点位于第二象限D.复数z满足∈R,则z∈R解析:选ABD 对于A,z===-+i,其虚部为,故A正确;对于B,z==(2+5i)i=-5+2i,故=-5-2i,故B正确;对于C,z=-i,在复平面内对应点的坐标为,位于第四象限,故C不正确;对于D,设z=a+bi(a,b∈R),则==,又∈R,得b=0,所以z=a∈R,故D正确.2.若关于x的方程x2+(2-i)x+(2m-4)i=0有实数根,则纯虚数m=________.解析:设m=bi(b∈R且b≠0),则x2+(2-i)x+(2bi-4)i=0,化简得(x2+2x-2b)+(-x-4)i=0,即解得∴m=4i.答案:4i3.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则b=______,c=______.解析:∵实系数方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知∴b=-2,c=3.答案:-2 34.已知复数z=-3+2i(i为虚数单位)是关于x的方程2x2+px+q=0(p,q为实数)的一个根,求p+q的值.解:∵z=-3+2i是关于x的方程2x2+px+q=0的一个根,∴2×(-3+2i)2+p(-3+2i)+q=0,即2×(9-4-12i)-3p+2pi+q=0,得10+q-3p+(2p-24)i=0.由复数相等得解得∴p+q=38.5.已知复数z=1+i.(1)设ω=z2+3-4,求ω;(2)若=1-i,求实数a,b的值.解:(1)因为z=1+i,所以ω=z2+3-4=(1+i)2+3(1-i)-4=-1-i.(2)因为z=1+i,所以==1-i,即=1-i,所以(a+b)+(a+2)i=(1-i)i=1+i,所以解得层级(三) 素养培优练1.欧拉公式eiθ=cos θ+isin θ,把自然对数的底数e,虚数单位i,三角函数cos θ和sin θ联系在一起,被誉为“数学的天桥”,若复数z满足(eiπ-z)·i=1+i,则|z|= ( )A. B.C.2 D.3解析:选A 由欧拉公式eiθ=cos θ+isin θ有:eiπ=cos π+isin π=-1.由(eiπ-z)·i=1+i,即(-1-z)·i=1+i.所以-1-z==1-i,即z=-2+i,所以|z|==.2.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是 ( )A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若2=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2解析:选BC 由复数的形式知选项A显然不正确;当z1z2=z1z3时,有z1z2-z1z3=z1(z2-z3)=0,又z1≠0,所以有z2=z3,故选项B正确;当2=z3时,则z2=3,|z1z2|2-|z1z3|2=(z1z2)(1 2)-(z1z3)(1 3)=z1z212-z1z3·13=0,故选项C正确;当z1z2=|z1|2时,则z1z2=|z1|2=z11⇒z1z2-z11=z1(z2-1)=0,又z1≠0,所以1=z2,故选项D不正确.3.复数z=且|z|=4,z对应的点在第一象限.若复数0,z,对应的点是正三角形的三个顶点,求实数a,b的值.解:z=(a+bi)=2i·i(a+bi)=-2a-2bi.由|z|=4,得a2+b2=4.①因为复数0,z,对应的点构成正三角形,所以|z-|=|z|,把z=-2a-2bi代入化简得|b|=1.②又因为z对应的点在第一象限,所以a<0,b<0.由①②得故所求值为a=-,b=-1.
相关试卷
这是一份高中数学人教A版 (2019)必修 第二册7.2 复数的四则运算练习,共3页。试卷主要包含了2 复数的四则运算,若复数z=a−i1+i,A 2等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第二册7.2 复数的四则运算复习练习题,共4页。试卷主要包含了复数eq \f的共轭复数是,若a为实数,且=-4i,则a=等内容,欢迎下载使用。
这是一份数学人教A版 (2019)7.2 复数的四则运算精品课后测评,共3页。试卷主要包含了2 复数的四则运算,若复数z=a−i1+i,A 2等内容,欢迎下载使用。