所属成套资源:【精讲精练】2022-2023数学华师大版新中考考点梳理
2022-2023 数学华师大版新中考精讲精练 考点05一元一次方程
展开
这是一份2022-2023 数学华师大版新中考精讲精练 考点05一元一次方程,文件包含2022-2023数学华师大版新中考精讲精练考点05一元一次方程解析版docx、2022-2023数学华师大版新中考精讲精练考点05一元一次方程原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
考点05一元一次方程考点总结1.解一元一次方程(1)方程两边都加上或减去同一个数或同一个整式,方程的解不变。方程两边都乘以或除以同一个不为零的数,方程的解不变。(2)移项 将方程的某些项改变符号后,从方程的一边移到另一边的变形叫做移项。(3)一元一次方程:只含有一个未知数,并且含有未知数的式子是整式,未知数的次数是1,这样的方程叫做一元一次方程。(4)解一元一次方程的一般过程去分母,去括号,移项,合并同类项,系数化为1。但要灵活运用。(5)列方程解应用题的一般思路实际问题 审题 找出等量关系 设未知数(分直接设法和间接设法) 列方程 解方程 检验解得合理性 真题演练 一、单选题1.(2021·湖南株洲·中考真题)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A.1.8升 B.16升 C.18升 D.50升【答案】C【分析】先进行单位换算,再利用50单位的粟,可换得30单位的粝米的关系,建立方程,求解即可.【详解】解:由题可知,3斗的粟即为30升的粟,设其可以换得粝米为x升,则,∴,∴可以换得粝米为18升;故选:C.2.(2021·湖南株洲·中考真题)方程的解是( )A. B. C. D.【答案】D【分析】通过移项、合并同类项、系数化为1三个步骤即可完成求解.【详解】解:,,
;故选:D.3.(2021·湖南邵阳·中考真题)在平面直角坐标系中,若直线不经过第一象限,则关于的方程的实数根的个数为( )A.0个 B.1个 C.2个 D.1或2个【答案】D【分析】直线不经过第一象限,则m=0或m<0,分这两种情形判断方程的根.【详解】∵直线不经过第一象限,∴m=0或m<0,当m=0时,方程变形为x+1=0,是一元一次方程,故有一个实数根;当m<0时,方程是一元二次方程,且△=,∵m<0,∴-4m>0, ∴1-4m>1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D.4.(2021·湖南攸县·一模)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为,则点E的坐标为( )A. B. C. D.【答案】A【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】解:∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=OC=10,DC=AO=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF= =6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt△CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3,∴点E的坐标为(10,3).故选择A.5.(2021·湖南茶陵·模拟预测)在直角坐标系中,点P(m,2—2m)的横坐标与纵坐标互为相反数,则P点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】根据m+2-2m=0计算m的值,后判定横坐标,纵坐标的正负求解即可【详解】∵点P(m,2—2m)的横坐标与纵坐标互为相反数,∴m+2-2m=0,∴m=2,∴2-2m =-2,∴点P位于第四象限,故选D6.(2021·湖南长沙·一模)《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为( )A.250步 B.200步 C.160步 D.320步【答案】A【分析】设善于走路的人追上不善于走路的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【详解】解:设善于走路的人追上不善于走路的人所用时间为t,
根据题意得:(100-60)t=100,
解得:t=2.5,
∴100t=100×2.5=250.
答:走路快的人要走250步才能追上走路慢的人.故选:A7.(2021·湖南江华·一模)在解方程 时,方程两边同时乘以6,去分母后,正确的是( )A.2x﹣1+6x=3(3x+1) B.2(x﹣1)+6x=3(3x+1) C.2(x﹣1)+x=3(3x+1) D.(x﹣1)+x=3(x+1)【答案】B【分析】方程两边同时乘以6,化简得到结果,即可作出判断.【详解】解:方程两边同时乘以6,得:2(x﹣1)+6x=3(3x+1), 故选:B.8.(2021·湖南·长沙市北雅中学二模)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是( )A. B.C. D.【答案】A【分析】设索为尺,杆子为()尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于一元一次方程.【详解】设索为尺,杆子为()尺,根据题意得:().故选:A.9.(2021·湖南长沙·模拟预测)在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,还差4元,问人数是多少?若设人数为人,则下列关于的方程符合题意的是( )A. B.C. D.【答案】A【分析】根据“总钱数不变”可列方程.【详解】设人数为x,则可列方程为:8x−3=7x+4故选:A.10.(2020·湖南张家界·中考真题)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x人,可列方程( )A. B. C. D.【答案】B【分析】设有x人,根据车的辆数不变,即可得出关于x的一元一次方程,此题得解.【详解】解:设有x人,根据车的辆数不变列出等量关系,每3人共乘一车,最终剩余2辆车,则车辆数为:,每2人共乘一车,最终剩余9个人无车可乘,则车辆数为:,∴列出方程为:.故选:B. 二、填空题11.(2021·湖南张家界·中考真题)已知方程,则______.【答案】【分析】直接移项求解一元一次方程的解.【详解】解:,,解得:,故答案是:.12.(2021·湖南邵阳·中考真题)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.【答案】53【分析】设人数为,再根据两种付费的总钱数一样即可求解.【详解】解:设一共有人由题意得:解得:所以价值为:(钱)故答案是:53.13.(2021·湖南师大附中博才实验中学一模)若是关于的方程的解,则的值等于_______________________.【答案】【分析】把代入方程,化简求值即可得到答案.【详解】解:把代入方程,得,解得,故答案为:-2.14.(2021·湖南赫山·三模)若|x﹣3|+|y+2|=0,则x+y的值为___.【答案】1【分析】根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.【详解】解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y=3﹣2=1,故答案为:1.15.(2021·湖南长沙·二模)一元一次方程的解是____________.【答案】1【分析】通过移项,合并同类项,未知数系数化为1,即可求解.【详解】,移项得:,解得:x=1,故答案是:1 三、解答题16.(2021·湖南益阳·中考真题)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?【答案】(1)长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)千米.【分析】(1)设开通后的长益高铁的平均速度为千米/分钟,从而可得某次长益城际列车的平均速度为千米/分钟,再根据“路程速度时间”、“开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米”建立方程,解方程即可得;(2)先求出甲、乙两个工程队每天对其施工的长度,再设甲工程队后期每天施工千米,根据“整个工程提早3天以上(含3天)完成”建立不等式,解不等式即可得.【详解】解:(1)设开通后的长益高铁的平均速度为千米/分钟,则某次长益城际列车的平均速度为千米/分钟,由题意得:,解得,则(千米),(千米),答:长益段高铁全长为64千米,长益城际铁路全长为104千米;(2)由题意得:甲工程队每天对其施工的长度为(千米),乙工程队每天对其施工的长度(千米),设甲工程队后期每天施工千米,则,解得,即,答:甲工程队后期每天至少施工千米.17.(2021·湖南长沙·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了道题,从而可得该参赛同学一共答错了道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对道题才能被评为“学党史小达人”,从而可得参赛者答错了道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了道题,则该参赛同学一共答错了道题,由题意得:,解得,答:该参赛同学一共答对了22道题;(2)设参赛者需答对道题才能被评为“学党史小达人”,则参赛者答错了道题,由题意得:,解得,答:参赛者至少需答对23道题才能被评为“学党史小达人”.18.(2021·湖南娄星·模拟预测)2021年是中国共产党建党100周年,全国上下正在开展党史学习教育活动.为给党员提供学习资料,某单位计划花6000元购进《论中国共产党历史》和《中国共产党简史》共200本,其中《论中国共产党历史》的价格是26元/本,《中国共产党简史》的价格是42元/本.求:(1)该单位计划购进《论中国共产党历史》和《中国共产党简史》各多少本?(2)为节约开支,该单位决定只购进这两种书共100本,总费用不超过3500元.那么,该单位最少要购进《论中国共产党历史》多少本?【答案】(1)该单位计划购进《论中国共产党历史》150本,《中国共产党简史》50本;(2)该单位最少要购进《论中国共产党历史》44本【分析】(1)设计划购进《论中国共产党历史》x 本,由题意可得关于x的方程,解方程即可得到问题解答;
(2)设计划购进《论中国共产党历史》a 本,由题意可得关于a的不等式,再根据a是整数可以得到解答.【详解】解:(1)设计划购进《论中国共产党历史》本,由题意可得:,解得:,(本),答:该单位计划购进《论中国共产党历史》150本,《中国共产党简史》50本;(2)设计划购进《论中国共产党历史》本,由题意可得:,解得:,答:该单位最少要购进《论中国共产党历史》44本.
相关试卷
这是一份2022-2023 数学浙教版新中考精讲精练 考点05一元一次方程,文件包含2022-2023数学浙教版新中考精讲精练考点05一元一次方程解析版docx、2022-2023数学浙教版新中考精讲精练考点05一元一次方程原卷版docx等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份2022-2023 数学华师大版新中考精讲精练 考点25圆,文件包含2022-2023数学华师大版新中考精讲精练考点25圆解析版docx、2022-2023数学华师大版新中考精讲精练考点25圆原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2022-2023 数学华师大版新中考精讲精练 考点23概率,文件包含2022-2023数学华师大版新中考精讲精练考点23概率解析版docx、2022-2023数学华师大版新中考精讲精练考点23概率原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。