所属成套资源:【精讲精练】2022-2023数学华师大版新中考考点梳理
2022-2023 数学华师大版新中考精讲精练 考点23概率
展开
这是一份2022-2023 数学华师大版新中考精讲精练 考点23概率,文件包含2022-2023数学华师大版新中考精讲精练考点23概率解析版docx、2022-2023数学华师大版新中考精讲精练考点23概率原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
考点23概率考点总结1.概率 (1)表示一个事件发生的可能性大小的这个数,叫做该事件的概率。P(所关注的事件)=所关注的结果/所有等可能的结果。2.概率的预测(1)要清楚我们关注的是发生哪个或哪些结果(2)要清楚所有机会的结果(1)、(2)两个结果个数之比就是关注的结果发生的概率。方法: 画树状图 列表法真题演练 一、单选题1.(2021·湖南永州·中考真题)小明计划到永州市体验民俗文化,想从“零陵渔鼓,瑶族长鼓舞,东安武术,舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞,舜帝祭典”的概率为( )A. B. C. D.【答案】B【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再依据概率公式求解即可.【详解】解:设A、B、C、D分别表示“零陵渔鼓,瑶族长鼓舞,东安武术,舜帝祭典”四种民俗文化,则列表格为: ABCDA (A,B)(A,C)(A,D)B(B,A) (B,C)(B,D)C(C,A)(C,B) (C,D)D(D,A)(D,B)(D,C) 由表可知,共有12种等可能结果,其中小明选择体验“瑶族长鼓舞,舜帝祭典”有2种,所以小明选择体验“瑶族长鼓舞,舜帝祭典”的概率为.故选:D.2.(2021·湖南娄底·中考真题)从背面朝上的分别画有等腰三角形、平行四边形、矩形、圆的四张形状、大小相同的卡片中,随机抽取一张,则所抽得的图形既是中心对称图形又是轴对称图形的概率为( )A. B. C. D.1【答案】B【分析】分别画有等腰三角形、平行四边形、矩形、圆的四张形状、大小相同的卡片中,其中既是轴对称图形,又是中心对称图形的是:矩形,圆,再根据概率公式求解即可.【详解】解:分别画有等腰三角形、平行四边形、矩形、圆的四张形状、大小相同的卡片中,其中既是轴对称图形,又是中心对称图形的是:矩形,圆;现从中任意抽取一张,则所抽得的图形既是中心对称图形又是轴对称图形的概率为,故选:B.3.(2021·湖南郴州·中考真题)下列说法正确的是( )A.“明天下雨的概率为80%”,意味着明天有80%的时间下雨B.经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C.“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D.小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上【答案】B【分析】根据概率的意义即可求出答案.【详解】解:A. “明天的降水概率为80%”,只能说明有很大机会下雨,而不能说明有80%的时间降雨,故A错误;B. 经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯,说法正确符合题意;C. “某彩票中奖概率是1%”,只能说明中奖的机会很小,故C错误;D. 小明前几次的数学测试成绩与这次测试成绩并没有任何关系,故D错误;故选:B.4.(2022·湖南怀化·中考真题)“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是( )A.① B.② C.③ D.④【答案】A【分析】不可能事件是一定不会发生的事件,根据定义即可判断.【详解】A选项,水中捞月,一定不会发生,是不可能事件,符合题意;B选项,守株待兔,可能会发生,是随机事件,不符合题意;C选项,百步传杨,可能会发生,是随机事件,不符合题意;D选项,瓮中捉鳖,一定会发生,是必然事件,不符合题意.故选:A.5.(2021·湖南长沙·中考真题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )A.戊同学手里拿的两张卡片上的数字是8和9B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4D.甲同学手里拿的两张卡片上的数字是2和9.【答案】A【分析】先根据判断出乙同学手里拿的两张卡片上的数字是1和3,从而可得判断出丁同学手里拿的两张卡片上的数字是2和5,再判断出甲同学手里拿的两张卡片上的数字是4和7,然后判断出丙同学手里拿的两张卡片上的数字是6和10,由此即可得出答案.【详解】解:由题意得:是由中的两个不相同的数字相加所得的数,只能是1与3的和,即乙同学手里拿的两张卡片上的数字是1和3,,丁同学手里拿的两张卡片上的数字是2和5,,甲同学手里拿的两张卡片上的数字是4和7,,丙同学手里拿的两张卡片上的数字是6和10,戊同学手里拿的两张卡片上的数字是8和9,故选:A.6.(2022·湖南长沙·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )A. B. C. D.【答案】A【分析】先画出树状图,从而可得投掷两次的所有可能的结果,再找出两次掷得骰子朝上一面的点数之和为5的结果,然后利用概率公式即可得.【详解】解:由题意,画树状图如下:
由此可知,投掷两次的所有可能的结果共有36种,它们每一种出现的可能性都相等;其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,则所求的概率为,故选:A.7.(2021·湖南衡阳·中考真题)下列说法正确的是( )A.为了解我国中学生课外阅读情况,应采取全面调查方式B.某彩票的中奖机会是1%,买100张一定会中奖C.从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人【答案】D【分析】根据普查的特点,得出了解我国中学生课外阅读情况应采取抽样调查;由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖;共有7个小球,其中3个红球,抽到红球的概率为;根据计算公式列出算式,即可求出答案.【详解】解:A、根据普查的特点,普查适合人数较少,调查范围较小的情况,而了解我国中学生课外阅读情况,人数较多,范围较广,应采取抽样调查,选项说法错误,不符合题意;B、由于中奖的概率是等可能的,则买100张可能会中奖,可能不会中奖,选项说法错误,不符合题意;C、共有7个小球,其中3个红球,抽到红球的概率为,选项说法错误,不符合题意;D、根据计算公式该项人数等于该项所占百分比乘以总人数,列出算式,求出结果为1360人,选项说法正确,符合题意.故选:D.8.(2022·湖南师大附中博才实验中学一模)我国古代有着辉煌的数学研究成果,其中《算经十书》是指汉、唐一千多年间的十部著名的数学著作,这些数学著作曾经是隋唐时代国子监算学科的教科书.十部书的名称是:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》、《算经十书》标志着中国古代数学的高峰.《算经十书》这10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中据说有6部成书于魏晋南北朝时期.其中《张丘建算经》、《夏侯阳算经》就成书于魏晋南北朝时期.某中学拟从《算经十书》专著中的魏晋南北朝时期的6部算经中任选2部作为“数学文化”进行推广学习,则所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为( )A. B. C. D.【答案】C【分析】设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示,其中《张丘建算经》、《夏侯阳算经》分别用A、B表示,列树形图表示所有等可能性,根据概率公式即可求解.【详解】解:设六部成书于魏晋南北朝的算经分别用A、B、C、D、E、F表示,其中《张丘建算经》、《夏侯阳算经》分别用A、B表示,根据题意列树形图得由树形图得共有30种等可能性,其中两部专著恰好是A、B即《张丘建算经》、《夏侯阳算经》的有两种等可能性,∴所选2部专著恰好是《张丘建算经》、《夏侯阳算经》的概率为.故选:C9.(2021·湖南·长沙市北雅中学二模)事件A:掷一枚质地均匀的硬币,朝上一面是正面;事件B:连续掷三次硬币,都是正面朝上.则( )A.事件A和事件B都是必然事件B.事件A是随机事件,事件B是不可能事件C.事件A是必然事件,事件B是随机事件D.事件A和事件B都是随机事件【答案】D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然事件;在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;在一定条件下不可能发生的事件叫不可能事件;据此判断即可得答案.【详解】∵掷一枚质地均匀的硬币,朝上一面可能是正面,也可能是背面,∴掷一枚质地均匀的硬币,朝上一面是正面是随机事件,∵连续掷三次硬币,可能正面朝上,也可能背面朝上,∴连续掷三次硬币,都是正面朝上是随机事件,∴事件A和事件B都是随机事件,故选:D. 10.(2021·湖南攸县·一模)在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,在看不到数字的情况下,从中随机抽取一张卡片,则这张卡片上的数字是3的倍数的概率是( )A. B. C. D.【答案】B【分析】先找出分别标有数字1,2,3,4,5,6,7,8,9的九张卡片中3的倍数的个数,再根据概率公式解答即可.【详解】解:标有数字1,2,3,4,5,6,7,8,9的九张卡片中,3的倍数有:3,6,9共3个;所以,任意抽取一张,数字为3的倍数的概率是,故选:B. 二、填空题11.(2021·湖南益阳·中考真题)小李在双休日到田间参加除草劳动,他随机从锄头、铁锹、镰刀中选用一种劳动工具,则他选到锄头的概率是_______.【答案】【分析】根据简单事件的概率计算公式即可得.【详解】解:由题意得:小李随机从锄头、铁锹、镰刀中选用一种劳动工具共有3种等可能性的结果;其中,他选到锄头的结果只有1种,则他选到锄头的概率是,故答案为:.12.(2021·湖南邵阳·中考真题)一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是___.【答案】【详解】解:根据树状图,蚂蚁获取食物的概率是=.故答案为.13.(2021·湖南岳阳·中考真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.【答案】【分析】先分别确定从袋子中随机摸出一个小球的总结果数和摸出的是白球的结果数,再用概率公式求解即可.【详解】解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,其中,摸出的小球是白球的结果数为3个,因此,摸出的小球是白球的概率为;故答案为:.14.(2021·湖南株洲·中考真题)抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.【答案】 【详解】试题分析:列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为.故答案为.15.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)不透明的袋子中有5张卡片,上面分别写着数字1,2,3,4,5,除数字外五张卡片无其它差别,从袋子中随机摸出一张卡片,其数字为偶数的概率是_______.【答案】【分析】根据等可能事件的概率公式,直接求解即可.【详解】解:∵一共有5个数字,偶数有2个,∴从袋子中随机摸出一张卡片,其数字为偶数的概率是=2÷5=,故答案是: 三、解答题16.(2021·湖南湘潭·中考真题)“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫,本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.【答案】(1);(2)【分析】(1)利用概率公式直接计算即可;(2)先列表求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.【详解】解:(1)由概率的含义可得:居民甲接种的是新冠病毒灭活疫苗的概率是 (2)列表如下: 由表中信息可得一共有种等可能的结果数,属于同种疫苗的结果数有:,,,,,,,共 种,所以居民甲、乙接种的是相同种类疫苗的概率为:17.(2021·湖南郴州·中考真题)我市为加快推进生活垃圾分类工作,对分类垃圾桶实行统一的外型、型号、颜色等,其中,可回收物用蓝色收集桶,有害垃圾用红色收集桶,厨余垃圾用绿色收集桶,其他垃圾用灰色收集桶.为了解学生对垃圾分类知识的掌握情况,某校宣传小组就“用过的餐巾纸应投放到哪种颜色的收集桶”在全校随机采访了部分学生,根据调查结果,绘制了如图所示的两幅不完整的统计图.用过的餐巾纸投放情况统计图根据图中信息,解答下列问题:(1)此次调查一共随机采访了________名学生,在扇形统计图中,“灰”所在扇形的圆心角的度数为________度;(2)补全条形统计图(要求在条形图上方注明人数);(3)若该校有3600名学生,估计该校学生将用过的餐巾纸投放到红色收集桶的人数;(4)李老师计划从,,,四位学生中随机抽取两人参加学校的垃圾分类知识抢答赛,请用树状图法或列表法求出恰好抽中,两人的概率.【答案】(1)200,198;(2)图见详解;(3)该校学生将用过的餐巾纸投放到红色收集桶的人数为288名;(4)恰好抽中,两人的概率为.【分析】(1)根据统计图可得投放到蓝色收集桶的人数为44名,所占总人数的百分比为22%,然后问题可求解;(2)由(1)可得投放到绿色收集桶的人数,然后条形统计图即可完成;(3)根据题意及(1)可直接进行求解;(4)由题意画出树状图,然后问题可求解.【详解】解:(1)由统计图及题意得:此次调查一共采访的学生总数为(名);“灰”所在扇形的圆心角的度数为;故答案为200,198;(2)由(1)可得被采访的学生总数为200名,∴投放到绿色收集桶的人数为200-110-44-16=30(名),补全条形统计图如图所示:(3)由(1)及题意得:(名);答:该校学生将用过的餐巾纸投放到红色收集桶的人数为288名.(4)由题意可得树状图如下:∴恰好抽中,两人的概率为.18.(2021·湖南常德·中考真题)我市华恒小区居民在“一针疫苗一份心,预防接种尽责任”的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到一男和一女的概率是多少.【答案】(1)200(人);(2)40%,30人;(3)人;(4).【分析】(1)根据A类型人数除以所占比例得到总人数;(2)根据B类型人数和总人数得到百分比,根据C类型的百分比和总人数求得人数;(3)估计人数可以用样本中接种了新冠疫苗的百分比乘以总人数得到估算值;(4)利用列表法列出所有可能的结果数,再用概率公式求得一男一女的概率.【详解】(1)A类型人数为20人,占样本的10%,所以此次抽样调查的人数是: (人);(2)B类型人数为80人,所以B类疫苗的人数的百分比是:,由图可知C类型人数的百分比为15%,所以接种C类疫苗的人数是:(人).(3)接种了新冠疫苗的为A,B,C类的百分比分别为,人,所以小区所居住的18000名居民中接种了新冠疫苗的有:人.(4)如图: 男1男2男3女1女2男1
男1男2男1男3男1女1男1女2男2男2男1
男2男3男2女1男2女2男3男3男1男3男2
男3女1男3女2女1女1男1女1男2女1男3
女1女2女2女2男1女2男2女2男3女2女1
从表中可以看出,共有20种等情况数,符合题意的选中一男和一女的情形共12种, P(一男一女)=.
相关试卷
这是一份2022-2023 数学浙教版新中考精讲精练 考点32概率及有关计算,文件包含2022-2023数学浙教版新中考精讲精练考点32概率及有关计算解析版docx、2022-2023数学浙教版新中考精讲精练考点32概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份2022-2023 数学浙教版新中考精讲精练 考点23圆的有关性质,文件包含2022-2023数学浙教版新中考精讲精练考点23圆的有关性质解析版docx、2022-2023数学浙教版新中考精讲精练考点23圆的有关性质原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点24 概率,文件包含2022-2023数学鲁教版新中考精讲精练考点24概率解析版docx、2022-2023数学鲁教版新中考精讲精练考点24概率原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。