2022-2023 数学冀教版新中考精讲精练 考点02 整式的加减
展开考点02 整式的加减
考点总结
知识点一 代数式
概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.
【注意】
1.代数式中除了含有字母、数字、运算符号外还可以有括号。
2.代数式中不含有=、<、>、≠ 等
3.对于用字母表示的数,如果没有特别说明,就应理解为它可以表示任何一个数。
代数式的分类:
列代数式方法
列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.
列代数式时应该注意的问题
(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.
(2)数字通常写在字母前面.
(3)带分数与字母相乘时要化成假分数.
(4)除法常写成分数的形式.
代数式的值
一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.
知识点二 单项式
概念:在代数式中,若只含有乘法(包括乘方)运算,或虽含有除法运算,但除式中不含字母的一类代数式叫单项式(单项式中“只含乘除,不含加减”).
【注意】:
1)圆周率是常数,所以也是常数;
2)当一个单项式的系数是1或-1时,“1”通常省略不写;
3)单项式的系数是带分数时,通常写成假分数.
单项式的系数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
单项式的次数:系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
【注意】:
1)一个单项式只含有字母因数,它的系数就是1或者-1。
2)一个单项式是一个常数时,它的系数就是它本身。
3)负数作系数时,需带上前面的符号。
4)若系数是1或-1时,“1”通常省略不写。
知识点三 多项式
概念:几个单项式的和叫多项式.
多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
【注意】
1.ax2+bx+c和x2+px+q是常见的两个二次三项式(若a、b、c、p、q是常数).
2.多项式通常以它的次数和项数来命名,称几次(最高次项的次数)几项(多项式项数)式。
知识点四 整式的加减
同类项概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
同类项与系数无关,与字母的排列顺序也无关。
合并同类项法则:系数相加,字母与字母的指数不变.
步骤:①找 ②移 ③合
去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
注意:
1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.
2、去括号时应将括号前的符号连同括号一起去掉.
3、括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.
4、括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项.
5、遇到多层括号一般由里到外,逐层去括号。
整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.
注意:多项式相加(减)时,必须用括号把多项式括起来,才能进行计算。
多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
真题演练
一.选择题(共10小题)
1.(2021•滦南县二模)已知整式2a﹣3b的值是﹣1,则整式1﹣4a+6b的值是( )
A.3 B.2 C.1 D.﹣1
2.(2021•路北区三模)关于代数式x+2的值,下列说法一定正确的是( )
A.比x小 B.比2小
C.比2大 D.随着x的增大而增大
3.(2021•乐亭县一模)在桌上的三个空盒子里分别放入了相同数量的围棋子n枚(n≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是( )
A.5 B.n+7 C.7 D.n+3
4.(2021•邯郸模拟)如图被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为an,则a6+a10的值为( )
A.76 B.74 C.72 D.70
5.(2021•河北模拟)我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.下图给出了“河图”的部分点图,请你推算出P处所对应的点图是( )
A. B. C. D.
6.(2021•路南区三模)某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是( )
A.原价减去10元后再打6折
B.原价打6折后再减去10元
C.原价减去10元后再打4折
D.原价打4折后再减去10元
7.(2021•平泉市一模)下列关于代数式“2+a”的说法,正确的是( )
A.表示2个a相加
B.代数式的值比a大
C.代数式的值比2大
D.代数式的值随a的增大而减小
8.(2020•蠡县一模)已知(x﹣1)3=ax3+bx2+cx+d,则a+b+c+d的值为( )
A.﹣1 B.0 C.1 D.不能确定
9.(2020•长安区二模)小华总结了以下结论,其中一定成立的有( )
①0是单项式;
②多项式1﹣x2y+x2是二次三项式;
③“a与b的和的平方”表示为a2+b2;
④“x的一半与y的2倍的差是非负数”表示为x﹣2y≥0.
A.1个 B.2个 C.3个 D.4个
10.(2021•柳南区校级模拟)下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )
A.400 B.401 C.402 D.403
二.填空题(共5小题)
11.(2021•邯郸模拟)已知x2﹣2x﹣1=0,则3x2﹣6x+2020= .
12.(2021•长沙模拟)规定:在一个矩形中,先剪下一个最大的正方形称为裁剪1次,再在剩余的图形中剪下一个最大的正方形称为裁剪2次,……依次进行,若裁剪n次后,最后剩余的图形也是一个正方形,我们把这样的矩形称为完美矩形.已知在完美矩形中,两条相邻边长分别为4,a,若a=7,则n= ;若1<a<3,且n=3,则a= .
13.(2021•海南模拟)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
14.(2021•石家庄一模)用代数式表示:x与y的和的.所列代数式为 .
15.(2020•回民区二模)根据如下程序,解决下列问题:
(1)当m=﹣1时,n= ;
(2)若n=6,则m= .
三.解答题(共3小题)
16.(2021•滦州市一模)已知矩形纸片甲,其边长如图所示(m>0),面积为S甲.
(1)用含m的代数式表示S甲= .
(2)若一个正方形纸片的周长与甲的周长相等,其面积设为S正.
①求该正方形边长.(用含m的代数式表示);
②小方同学发现:“S正与S甲的差是定值”,请判断小方同学的发现是否正确,并通过计算说明理由.
17.(2021•河北模拟)在数学课上,王老师出示了这样一道题目:“当a=,b=﹣3时,求多项式2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)的值.”解完这道题后,小明指出:“a=,b=﹣3是多余的条件.”师生讨论后,一致认为小明的说法是正确的.
(1)请你说明正确的理由;
(2)受此启发,王老师又出示了一道题目:“已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,求m+n的值.”请你解决这个问题.
18.(2021•定兴县一模)嘉琪同学准备化简:(3x2﹣6x﹣8)﹣(x2﹣2x■6),算式中“■”是“+、﹣、×、÷”中的某一种运算符号.
(1)如果“■”是“×”,请你化简(3x2﹣6x﹣8)﹣(x2﹣2x×6);
(2)若x2﹣2x﹣3=0,求(3x2﹣6x﹣8)﹣(x2﹣2x﹣6)的值.
(3)当x=1时,(3x2﹣6x﹣8)﹣(x2﹣2x■6)的值为﹣4,请你通过计算说明“■”所代表的运算符号.
2022-2023 数学鲁教版新中考精讲精练 考点02 整式与因式分解: 这是一份2022-2023 数学鲁教版新中考精讲精练 考点02 整式与因式分解,文件包含2022-2023数学鲁教版新中考精讲精练考点02整式与因式分解解析版docx、2022-2023数学鲁教版新中考精讲精练考点02整式与因式分解原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
2022-2023 数学冀教版新中考精讲精练 考点31 统计与概率: 这是一份2022-2023 数学冀教版新中考精讲精练 考点31 统计与概率,文件包含2022-2023数学冀教版新中考精讲精练考点31统计与概率解析版docx、2022-2023数学冀教版新中考精讲精练考点31统计与概率原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
2022-2023 数学冀教版新中考精讲精练 考点25 旋转: 这是一份2022-2023 数学冀教版新中考精讲精练 考点25 旋转,文件包含2022-2023数学冀教版新中考精讲精练考点25旋转解析版docx、2022-2023数学冀教版新中考精讲精练考点25旋转原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。