所属成套资源:【精讲精练】2022-2023 数学鲁教版新中考考点梳理
2022-2023 数学鲁教版新中考精讲精练 考点06 分式方程
展开
这是一份2022-2023 数学鲁教版新中考精讲精练 考点06 分式方程,文件包含2022-2023数学鲁教版新中考精讲精练考点06分式方程解析版docx、2022-2023数学鲁教版新中考精讲精练考点06分式方程原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
考点06 分式方程考点总结 1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=,时间=等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.真题演练 一.选择题(共10小题)1.(2021•德州)为响应“绿色出行”的号召,小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程多10km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的.小王乘公交车上班平均每小时行驶( )A.30km B.36km C.40km D.46km2.(2021•河东区二模)为了缓解城市用水紧张及提倡节约用水,某市自2021年1月1日起调整居民用水价格,每立方米水费上涨25%,该市林老师家2020年12月份的水费是18元,而2021年1月份的水费是36元,且已知林老师家2021年1月份的用水量比2020年12月份的用水量多3m3,求该市去年的居民用水价格?设去年的居民用水价格x元/m3,则所列方程正确的是( )A. B. C. D.3.(2021•德州模拟)若关于x的方程=2+无解,则m的值是( )A.﹣3 B.3 C.2 D.﹣24.(2021•潍坊一模)关于x的分式方程﹣=1有增根,则它的增根是( )A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=35.(2021•诸城市一模)已知关于x的分式方程+2=的解为正数,则正整数m的取值可能是( )A.6 B.5 C.4 D.36.(2021•东胜区一模)随着市场对新冠疫苗需求越来越大,为满足市场需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产10万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产400万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意得( )A.= B.= C.= D.=7.(2021•南海区四模)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为( )A. B. C. D.8.(2019•益阳)解分式方程+=3时,去分母化为一元一次方程,正确的是( )A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)9.(2017•枣阳市模拟)对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为( )A. B. C. D.﹣10.(2021•沂县二模)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工甲和乙,在分拣同一类物件时,甲分拣120个物件所用的时间与乙分拣90个物件所用的时间相同,已知甲每小时比乙多分拣20个物件.若设乙每小时分拣x个物件,则可列方程为( )A. B. C. D.二.填空题(共5小题)11.(2021•章丘区二模)当x= 时,与互为相反数.12.(2021•禹城市模拟)若关于x的分式方程的解为正数,则m的取值范围为 .13.(2021•潍坊)若x<2,且+|x﹣2|+x﹣1=0,则x= .14.(2021•青岛模拟)青岛地铁是青岛的新名片,某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为xkm/h,则可列方程 .15.(2021秋•泰山区期中)为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用4800元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2880元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x元,则符合题意的方程是 .三.解答题(共3小题)16.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.(1)求A,B两款手机的进货单价分别是多少元?(2)某周末两天销售单上的数据,如表所示:日期A款手机(部)B款手机(部)销售总额(元)星期六5840100星期日6741100求A,B两款手机的销售单价分别是多少元?(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.17.(2021•聊城二模)(1)计算:.(2)解方程:.18.(2021•淄川区二模)某社区购买甲、乙两种树苗进行绿化,已知用900元购买甲种树苗的棵数与用600元购买乙种树苗的棵树相同,乙种树苗每棵比甲种树苗每棵少10元.(1)求甲种树苗每棵多少钱?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?
相关试卷
这是一份2022-2023 数学鲁教版新中考精讲精练 考点24 概率,文件包含2022-2023数学鲁教版新中考精讲精练考点24概率解析版docx、2022-2023数学鲁教版新中考精讲精练考点24概率原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点23 统计,文件包含2022-2023数学鲁教版新中考精讲精练考点23统计解析版docx、2022-2023数学鲁教版新中考精讲精练考点23统计原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点22 视图与投影,文件包含2022-2023数学鲁教版新中考精讲精练考点22视图与投影解析版docx、2022-2023数学鲁教版新中考精讲精练考点22视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。