所属成套资源:【精讲精练】2022-2023 数学鲁教版新中考考点梳理
2022-2023 数学鲁教版新中考精讲精练 考点08 位置与函数
展开
这是一份2022-2023 数学鲁教版新中考精讲精练 考点08 位置与函数,文件包含2022-2023数学鲁教版新中考精讲精练考点08位置与函数原卷版docx、2022-2023数学鲁教版新中考精讲精练考点08位置与函数解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
考点08 位置与函数
考点总结
1.有序数对
(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.
2.点的坐标特征
点的位置
横坐标符号
纵坐标符号
第一象限
﹢
+
第二象限
-
+
第三象限
-
-
第四象限
+
-
x轴上
正半轴上
+
0
负半轴上
-
0
y轴上
正半轴上
0
+
负半轴上
0
-
原点
0
0
3.轴对称
(1)点(x,y)关于x轴对称的点的坐标(x,-y);(2)点(x,y)关于y轴对称的点的坐标(-x,y).
4.中心对称
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).
5.图形在坐标系中的旋转
图形(点)的旋转与坐标变化:
(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);
(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);
(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);
(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).
6.图形在坐标系中的平移
图形(点)的平移与坐标变化
(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);
(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);
(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);
(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).
7.函数
(1)函数的定义
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
例如:在s=60t中,有两个变量;s与t,当t变化时,s也随之发生变化,并且对于t在其取值范围内的每一个值,s都有唯一确定的值与之对应,我们就称t是自变量,s是t的函数.
对函数定义的理解,主要抓住以下三点:①有两个变量.②函数不是数,函数的本质是对应,函数关系就是变量之间的对应关系,且是一种特殊的对应关系,一个变量的数值随着另一个变量数值的变化而变化.③函数的定义中包括了对应值的存在性和唯一性两重意思,即对自变量的每一个确定的值,函数有且只有一个值与之对应,对自变量x的不同取值,y的值可以相同,如:函数y=x2,当x=1和x=-1时,y的对应值都是1.④在某个变化过程中处于主导地位的变量即为自变量,随之变化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(2)函数取值范围的确定
使函数有意义的自变量的取值的全体叫做自变量的取值范围,函数自变量的取值范围的确定必须考虑两个方面:①不同类型的函数关系式中自变量取值范围的求解方法;②当用函数关系式表示实际问题时,自变量的取值不但要使函数关系式有意义,而且还必须使实际问题有意义.
(3)函数解析式及函数值
函数解析式:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.
注意:①函数解析式是等式.②函数解析式中指明了哪个是自变量,哪个是函数,通常等式右边的代数式中的变量是自变量,等式左边的变量表示函数.③书写函数的解析式是有顺序的.y=2x-1表示y是x的函数,若x=2y-1,则表示x是y的函数,即求y关于x的函数解析式时,必须用含x的代数式表示y,就是等式左边是一个变量y,右边是一个含x的代数式.④用数学式子表示函数的方法叫做解析式法.
函数值:对于自变量x在取值范围内的某个确定的值a,函数y所对应的值为b,即当x=a,y=b时,b叫做自变量x的值为a时的函数值.
(4)函数的图象及其画法
一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
画函数的图象,可以运用描点法,其一般步骤如下:
①列表:表中列举一些自变量的值及其对应的函数值,自变量的取值不应使函数值太大或太小,以便于描点,点数一般以5到7个为宜.②描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点.描点时,要注意横、纵坐标的符号与点所在的象限(或坐标轴)之间的关系,描出的点大小要适中,位置要准确.③连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.
(5)函数的表示方法
函数的表示方法一般有三种:解析式法、列表法和图象法,表示函数关系时,要根据具体情况选择适当的方法,有时为了全面地认识问题,需要几种方法同时使用.
真题演练
一.选择题(共10小题)
1.(2021•潍坊)记实数x1,x2,…,xn中的最小数为min{x1,x2,…,xn},例如min{﹣1,1,2}=﹣1,则函数y=min{2x﹣1,x,4﹣x}的图象大致为( )
A. B.
C. D.
【分析】根据最小数的定义可知:函数y=min{2x﹣1,x,4﹣x}的图象是每一段图象的最低处,即可得函数图象.
【解答】解:如图,由2x﹣1=x得:x=1,
∴点A的横坐标为1,
由4﹣x=x得:x=2,
∴点C的横坐标为2,
当x≤1时,y=min{2x﹣1,x,4﹣x}=2x﹣1,
当1<x≤2时,y=min{2x﹣1,x,4﹣x}=x,
当x>2时,y=min{2x﹣1,x,4﹣x}=4﹣x,
则函数y=min{2x﹣1,x,4﹣x}的图象大致为B.
故选:B.
2.(2021•菏泽)如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为( )
A. B.2 C.8 D.10
【分析】根据函数图象中的数据可以分别求得矩形的边长BC,AB的长,从而可以求得矩形的面积.
【解答】解:如图所示,过点B、D分别作y=2x+1的平行线,交AD、BC于点E、F.
由图象和题意可得AE=4﹣3=1,CF=8﹣7=1,BE=DF=,BF=DE=7﹣4=3,
则AB===2,BC=BF+CF=3+1=4,
∴矩形ABCD的面积为AB•BC=2×4=8.
故选:C.
3.(2021•周村区二模)函数y=中自变量x的取值范围( )
A.x≠2 B.x>2 C.x≥2 D.x≠0且x≠2
【分析】根据分式的分母不等于零,解不等式可得结论.
【解答】解:由题意:x﹣2≠0.
∴x≠2.
∴函数y=中自变量x的取值范围:x≠2.
故选:A.
4.(2021•博山区一模)根据如图所示的程序计算函数y的值,若输入的x值为3或﹣4时,输出的y值互为相反数,则b等于( )
A.﹣30 B.﹣23 C.23 D.30
【分析】由输入的x值为3或﹣4时输出的y值互为相反数,即可得出关于b的一元一次方程,解之即可得出结论.
【解答】解:依题意得:32﹣b=﹣,
解得:b=30.
故选:D.
5.(2021•菏泽二模)函数y=自变量x的取值范围是( )
A.x≠3 B.x≤5 C.x≤5且x≠3 D.x<5且x≠3
【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.
【解答】解:由题意得,5﹣x≥0,x﹣3≠0,
解得,x≤5且x≠3,
故选:C.
6.(2021•市中区二模)平面直角坐标系中,P(x,y)的横坐标与纵坐标的绝对值之和叫做P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.若点B在第一象限且满足「B」=4,则满足条件的所有B点与坐标轴围成的图形的面积为( )
A.2 B.4 C.6 D.8
【分析】由勾股值的定义可得方程x+y=4(x>0,y>0),变形得y=﹣x+4,求出此函数与坐标轴的交点坐标即可求面积.
【解答】解:设点P坐标为(x,y),由点B在第一象限且满足「B」=4,
∴x+y=4(x>0,y>0).
即y=﹣x+4,
∵y=﹣x+4与x轴交点为(4,0),与y轴交点为(0,4),
∴满足条件的所有B点与坐标轴围成的图形的面积为=8.
故选:D.
7.(2021•广饶县一模)如果点P(m,1﹣2m)在第一象限,那么m的取值范围是( )
A.0<m< B.﹣<m<0 C.m<0 D.m>
【分析】根据第一象限内点的横坐标与纵坐标都是正数,列出不等式组求解即可.
【解答】解:∵点P(m,1﹣2m)在第一象限,
∴,
由②得,m<,
所以,m的取值范围是0<m<.
故选:A.
8.(2021•滨城区二模)以直角坐标系的原点O为圆心,以1为半径作圆.若点P是该圆上第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标为( )
A.(cosα,1) B.(1,sinα)
C.(sinα,cosα) D.(cosα,sinα)
【分析】作PA⊥x轴于点A.那么OA是α的邻边,是点P的横坐标,为cosα;PA是α的对边,是点P的纵坐标,为sinα.
【解答】解:作PA⊥x轴于点A,则∠POA=α,
sinα=,
∴PA=OP•sinα,
∵cosα=,
∴OA=OP•cosα.
∵OP=1,
∴PA=sinα,OA=cosα.
∴P点的坐标为(cosα,sinα)
故选:D.
9.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为( )
A.﹣2 B.﹣1 C.0 D.1
【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是﹣1.
【解答】解:点运动一个用时为÷π=2秒.
如图,作CD⊥AB于D,与交于点E.
在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,
∴∠CAD=30°,
∴CD=AC=×2=1,
∴DE=CE﹣CD=2﹣1=1,
∴第1秒时点P运动到点E,纵坐标为1;
第2秒时点P运动到点B,纵坐标为0;
第3秒时点P运动到点F,纵坐标为﹣1;
第4秒时点P运动到点G,纵坐标为0;
第5秒时点P运动到点H,纵坐标为1;
…,
∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,
∵2019÷4=504…3,
∴第2019秒时点P的纵坐标为是﹣1.
故选:B.
10.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是( )
A. B.
C. D.
【分析】根据题意分1<x≤与<x≤2两种情况,确定出y与x的关系式,即可确定出图象.
【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,
∵OA=1,AP=x,y=sin∠APB=sin∠APO,
∴xy=1,即y=(1<x≤),
当P在上运动时,∠APB=∠AOB=45°,
此时y=(<x≤2),
图象为:
故选:C.
二.填空题(共5小题)
11.(2021•德州)在平面直角坐标系xOy中,以点O为圆心,任意长为半径画弧,交x轴正半轴于点A,交y轴于点B,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧在y轴右侧相交于点P,连接OP,若OP=2,则点P的坐标为 (2,2)或(2,﹣2) .
【分析】由作图知点P在第一象限或第四象限角平分线上,从而得出m2+m2=(2)2,解之可得.
【解答】解:如图,
由作图知点P在第一象限或第四象限角平分线上,
∴设点P的坐标为(m,±m)(m>0),
∵OP=2,
∴m2+m2=(2)2,
∴m=2,
∴P(2,2)或(2,﹣2),
故答案为(2,2)或(2,﹣2).
12.(2021•平邑县模拟)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2020的坐标为 (﹣22019,0) .
【分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.
【解答】解:由题意得,
A1的坐标为(1,0),
A2的坐标为(1,),
A3的坐标为(﹣2,2),
A4的坐标为(﹣8,0),
A5的坐标为(﹣8,﹣8),
A6的坐标为(16,﹣16),
A7的坐标为(64,0),
…
由上可知,A点的方位是每6个循环,
与第一点方位相同的点在x轴正半轴上,其横坐标为2n﹣1,其纵坐标为0,
与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,
与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,
与第四点方位相同的点在x轴负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,
与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,
与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,
∵2020÷6=336…4,
∴点A2020的方位与点A4的方位相同,在在x轴负半轴上,其横坐标为﹣2n﹣1=﹣22019,纵坐标为0,
故答案为:(﹣22019,0).
故答案为:(﹣22019,0).
13.(2021•济宁)已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是 y=+2 .
【分析】根据平均数的公式直接列式即可得到函数解析式.
【解答】解:根据题意得:
y=(0+1+x+3+6)÷5
=+2.
故答案为:y=+2.
14.(2021•东昌府区一模)在市区内,我市乘坐出租车的价格y(元)与路程x(km)的函数关系图象如图所示.出差归来的小李从火车站乘坐出租车回家用了18元,火车站到小李家的路程为 15 km.
【分析】由图象可知,当x≤3时,出租车收费为6元,超出3km时,每千米收费为1元,据此列式计算即可.
【解答】解:由题意可知,当x≤3时,出租车收费为6元,超出3km时,每千米收费为:(7﹣6)÷(4﹣3)=1(元),
所以火车站到小李家的路程为:3+(18﹣6)÷1=15(km ).
故答案为:15.
15.(2021•商河县校级模拟)张琪和爸爸到英雄山广场运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家.张琪和爸爸在整个运动过程中离家的路程y1(米)、y2(米)与运动时间x(分)之间的函数关系如图所示,求张琪开始返回时与爸爸相距 1500 米.
【分析】根据题意结合图象可得爸爸返回的速度以及张琪前行的速度,进而得出张琪开始返回时与爸爸的距离.
【解答】解:由题意得,爸爸返回的速度为:3000÷(45﹣15)=100(米/分),
张琪前行的速度为:3000÷15=200(米/分),
张琪开始返回时与爸爸的距离为:200×5+100×5=1500(米).
故答案为:1500.
三.解答题(共2小题)
16.(2021•罗庄区一模)经过实验获得两个变量x(x>0),y(y>0)的一组对应值如表.
x
1
2
3
4
5
6
y
6
3
2
1.5
1.2
1
(1)请画出相应函数的图象,并求出函数表达式.
(2)点A(x1,y1),B(x2,y2)在此函数图象上.若x1<x2,则y1,y2有怎样的大小关系?请说明理由.
【分析】(1)在平面直角坐标系中妙处各点,用光滑曲线连接即可;利用待定系数法可求出函数表达式;
(2)有函数可知,当x>0时,y随x的增大而减小,由此可判断y1,y2的大小.
【解答】解:(1)函数图象如图所示,
设函数表达式为,
把x=1,y=6代入,得k=6,
∴函数表达式为;
(2)∵k=6>0,
∴在第一象限,y随x的增大而减小,
∴0<x1<x2时,则y1>y2.
17.(2020•阳谷县校级模拟)某城市出租车的收费标准为:3千米以内(含3千米)收费8元,超过3千米时,超过部分每千米收费1.4元.
(1)写出车费y(元)和行车里程x(千米)之间的关系式;
(2)甲乘坐13千米需付多少元钱?若乙付的车费是36元,则他乘坐了多少里程?
【分析】(1)利用3千米以内(含3千米)收费8元,超过3千米的部分每千米收费1.4元,进而得出y与x之间的函数关系;
(2)利用(1)中所求得出,x=13时以及y=36时,分别求出y和x的值即可.
【解答】解:(1)由题意可得,当x>3时,y=8+(x﹣3)×1.4=1.4x+3.8;
当0<x≤3时,y=8;
(2)当x=13时,则y=1.4×13+3.8=22(元),
当y=36元,则36=1.4x+3.8,
解得:x=23.
答:该车行驶路程为23千米.
相关试卷
这是一份2022-2023 数学鲁教版新中考精讲精练 考点24 概率,文件包含2022-2023数学鲁教版新中考精讲精练考点24概率解析版docx、2022-2023数学鲁教版新中考精讲精练考点24概率原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点23 统计,文件包含2022-2023数学鲁教版新中考精讲精练考点23统计解析版docx、2022-2023数学鲁教版新中考精讲精练考点23统计原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点17 圆,文件包含2022-2023数学鲁教版新中考精讲精练考点17圆解析版docx、2022-2023数学鲁教版新中考精讲精练考点17圆原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。