所属成套资源:【精讲精练】2022-2023 数学鲁教版新中考考点梳理
2022-2023 数学鲁教版新中考精讲精练 考点18 尺规作图与定义、命题、定理
展开
这是一份2022-2023 数学鲁教版新中考精讲精练 考点18 尺规作图与定义、命题、定理,文件包含2022-2023数学鲁教版新中考精讲精练考点18尺规作图与定义命题定理解析版docx、2022-2023数学鲁教版新中考精讲精练考点18尺规作图与定义命题定理原卷版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
考点18 尺规作图与定义、命题、定理 考点总结一、尺规作图 1.尺规作图的定义:在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图1)作一条线段等于已知线段;2)作一个角等于已知角;3)作一个角的平分线;4)作一条线段的垂直平分线;5)过一点作已知直线的垂线.3.根据基本作图作三角形1)已知三角形的三边,求作三角形;2)已知三角形的两边及其夹角,求作三角形;3)已知三角形的两角及其夹边,求作三角形;4)已知三角形的两角及其中一角的对边,求作三角形;5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图1)过不在同一直线上的三点作圆(即三角形的外接圆);2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键1)先分析题目,读懂题意,判断题目要求作什么;2)读懂题意后,再运用几种基本作图方法解决问题. 2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角. 三、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.真题演练一.选择题(共10小题)1.(2021•龙口市模拟)如图,在∠AOB中,以点O为圆心,任意长为半径画弧,分别交射线OA,OB于点C,D,再分别以C、D为圆心,OC的长为半径画弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=6,OE=,则CD两点之间距离为( )A.3 B.6 C.43 D.82.(2021•东港区校级二模)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM,ON于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=( )A. B. C. D.3.(2021•历下区三模)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③连接AP,交BC于点D.若CD=3,BD=5,则AC的长为( )A.4 B.5 C.6 D.74.(2020•河北)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是( )A.a,b均无限制 B.a>0,b>DE的长 C.a有最小限制,b无限制 D.a≥0,b<DE的长5.(2021•日照)下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是95%,则明天一定会下雨;④若一个多边形的各内角都等于108°,则它是正五边形,其中真命题的个数是( )A.0 B.1 C.2 D.36.(2021•滨城区一模)下列命题中正确的是( )A.对角线互相垂直的四边形是菱形 B.有一个角是直角的四边形是矩形 C.对角线互相平分且相等的四边形是矩形 D.邻边相等的四边形是菱形7.(2021•商河县校级模拟)给出下列5个命题:①两边及其夹角分别对应相等的两个三角形全等;②互补的两个角中一定是一个为锐角,另一个为钝角;③平行于同一条直线的两条直线平行;④两直线平行,同旁内角相等.其中真命题的个数为( )A.1 B.2 C.3 D.48.(2021•周村区一模)利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设( )A.直角三角形的每个锐角都小于45° B.直角三角形有一个锐角大于45° C.直角三角形的每个锐角都大于45° D.直角三角形有一个锐角小于45°9.(2019•北京)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A.0 B.1 C.2 D.310.(2014•德州)下列命题中,真命题是( )A.若a>b,则c﹣a<c﹣b B.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 C.点M(x1,y1),点N(x2,y2)都在反比例函数y=的图象上,若x1<x2,则y1>y2 D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S=4,S=9,这过程中乙发挥比甲更稳定二.填空题(共5小题)11.(2021•诸城市三模)下列说法正确的是 .A.35.5°>35°5'B.“矩形的对角线相等”的逆命题是真命题C.已知等腰三角形两边的长分别是2和5,则此三角形周长可能是9D.三角形的重心是三角形三条中线的交点12.(2021•河东区二模)如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为 .13.(2021•博山区二模)如图,Rt△ACB中,∠C=90°,AC=BC=6,点O在BC边上,且OB=2,P是AB边上的动点,连接OP,以点O为圆心,OP长为半径为作⊙O.当⊙O与Rt△ACB的边相切时,BP的长为 .14.(2020•广东)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为 .15.(2018•成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为 .三.解答题(共3小题)16.(2021•青岛模拟)如图,已知△ABC,AC>AB,求作一个△PBC,使PB=PC,且∠BPC=∠A.(保留作图痕迹,不写作法.)17.(2021•城阳区一模)已知:线段m.求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.18.(2021•潍坊一模)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票的数量分别为5张,4张,3张,2张、每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小.(1)如果按“甲、乙、丙、丁”的先后顺序购票,那么他们4人是否都能购买到满足条件的票?如果能,请写出每人购买的座位号;如果不能,请说明理由.(2)若乙第一个购票,要使其他3人也能购买到满足条件的票,甲、丙、丁应该按怎样的顺序购票?写出所有符合要求的购票顺序.
相关试卷
这是一份中考数学考点一遍过 考点18 尺规作图与定义、命题、定理,共58页。试卷主要包含了学会运用函数与方程思想,学会运用数形结合思想,要学会抢得分点,学会运用等价转换思想,学会运用分类讨论的思想,转化思想等内容,欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点24 概率,文件包含2022-2023数学鲁教版新中考精讲精练考点24概率解析版docx、2022-2023数学鲁教版新中考精讲精练考点24概率原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份2022-2023 数学鲁教版新中考精讲精练 考点23 统计,文件包含2022-2023数学鲁教版新中考精讲精练考点23统计解析版docx、2022-2023数学鲁教版新中考精讲精练考点23统计原卷版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。