初中数学中考复习 专题09 动态几何定值问题(原卷版)
展开玩转压轴题,争取满分之备战2020年中考数学解答题高端精品
专题九 动态几何定值问题
【考题研究】
数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要 “以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】
动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:
第一种是分两步完成 :先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.
第二种是采用综合法,直接写出证明.
【解题类型及其思路】
在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】
类型一 【线段及线段的和差为定值】
【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
【举一反三】
如图(1),已知∠,点为射线上一点,且,、为射线和上的两个动点(),过点作⊥,垂足为点,且,联结.
(1)若时,求的值;
(2)设,求与之间的函数解析式,并写出定义域;
(3)如图(2),过点作的垂线,垂足为点,交射线于点,点、在射线和上运动时,探索线段的长是否发生变化?若不发生变化,求出它的值。若发生变化,试用含x的代数式表示的长.
类型二 【线段的积或商为定值】
【典例指引2】如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.
(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;
(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;
(3)拓展延伸:设时,的面积为,试用含的代数式表示;
①在旋转过程中,若时,求对应的的面积;
②在旋转过程中,当的面积为4.2时,求对应的的值.
【举一反三】
如图1,已知直线y=a与抛物线交于A、B两点(A在B的左侧),交y轴于点C
(1)若AB=4,求a的值
(2)若抛物线上存在点D(不与A、B重合),使,求a的取值范围
(3)如图2,直线y=kx+2与抛物线交于点E、F,点P是抛物线上的动点,延长PE、PF分别交直线y=-2于M、N两点,MN交y轴于Q点,求QM·QN的值。
图1 图2
类型三 【角及角的和差定值】
【典例指引3】如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C、D在边AB的同侧),连接CD.
(1)若∠ABC90°,∠BAC30°,求∠BDC的度数;
(2)当∠BAC2∠BDC时,请判断△ABC的形状并说明理由;
(3)当∠BCD等于多少度时,∠BAC2∠BDC恒成立.
【举一反三】
如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
类型四 【三角形的周长为定值】
【典例指引4】如图,现有一张边长为的正方形ABCD,点P 为正方形 AD 边上的一点(不与点 A、点D 重合),将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,PG 交DC 于H,折痕为 EF,连接 BP,BH.
(1)求证:;
(2)求证:;
(3)当点P在边AD上移动时,△PDH的周长是否发生变化?不变化,求出周长,若变化,说明理由;
(4)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式.
【举一反三】如图,在等腰直角三角形ABC中,∠C=90°,AB=8,点O是AB的中点.将一个边长足够大的Rt△DEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DE与AC边交于点G,EF与BC边交于点H.
(1)当点G在AC边什么位置时,四边形CGOH是正方形.
(2)等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.
类型五 【三角形的面积及和差为定值】
【典例指引5】综合与实践:矩形的旋转
问题情境:
在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.
操作发现:
(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是 .
(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN时,如图3所示,四边形QMRN为菱形,请你证明这个结论.
(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.
实践探究:
(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,宽为,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)
【举一反三】
如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
(1)求证:BE=CE
(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
①求证:△BEM≌△CEN;
②若AB=2,求△BMN面积的最大值;
③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
【新题训练】
1.已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,
(1)如图1,当AE⊥BC时,求线段BE、CG的长度.
(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.
(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.
2.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD,PE,DE.
(1)求抛物线的解析式;
(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;
(3)请直接写出△PDE周长的最大值和最小值.
3.如图,四边形ABCD中,AD∥BC,∠ABC=90°.
(1)直接填空:∠BAD=______°.
(2)点P在CD上,连结AP,AM平分∠DAP,AN平分∠PAB,AM、AN分别与射线BP交于点M、N.设∠DAM=α°.
①求∠BAN的度数(用含α的代数式表示).
②若AN⊥BM,试探究∠AMB的度数是否为定值?若为定值,请求出该定值;若不为定值,请用α的代数式表示它.
4.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)
(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)
(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)
5.(解决问题)如图1,在中,,于点.点是边上任意一点,过点作,,垂足分别为点,点.
(1)若,,则的面积是______,______.
(2)猜想线段,,的数量关系,并说明理由.
(3)(变式探究)如图2,在中,若,点是内任意一点,且,,,垂足分别为点,点,点,求的值.
(4)(拓展延伸)如图3,将长方形沿折叠,使点落在点上,点落在点处,点为折痕上的任意一点,过点作,,垂足分别为点,点.若,,直接写出的值.
6.如图,已知锐角△ABC中,AB、AC边的中垂线交于点O
(1)若∠A=α(0°<α<90°),求∠BOC;
(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.
7.⊙O的直径AB=15cm,有一条定长为9cm的动弦,CD在弧AB上滑动(点C和A、点D与B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F.
(1)求证:AE=BF
(2)在动弦CD滑动过程中,四边形CDFE的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由.
8.如图,动点在以为圆心,为直径的半圆弧上运动(点不与点及的中点重合),连接.过点作于点,以为边在半圆同侧作正方形,过点作的切线交射线于点,连接、.
(1)探究:如左图,当动点在上运动时;
①判断是否成立?请说明理由;
②设,是否为定值?若是,求出该定值,若不是,请说明理由;
③设,是否为定值?若是,求出该定值,若不是,请说明理由;
(2)拓展:如右图,当动点在上运动时;
分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)
9.如图,已知⊙的半径为,为直径,为弦.与交于点,将 沿着翻折后,点与圆心重合,延长至,使,链接.
()求的长.
()求证:是⊙的切线.
()点为的中点,在延长线上有一动点,连接交于点,交于点(与、不重合).则为一定值.请说明理由,并求出该定值.
10.在平面直角坐标系中,点A和点B分别在x轴的正半轴和y轴的正半轴上,且OA=6,OB=8,点D是AB的中点.
(1)直接写出点D的坐标及AB的长;
(2)若直角∠NDM绕点D旋转,射线DP分别交x轴、y轴于点P、N,射线DM交x轴于点M,连接MN.
①当点P和点N分别在x轴的负半轴和y轴的正半轴时,若△PDM∽△MON,求点N的坐标;
②在直角∠NDM绕点D旋转的过程中,∠DMN的大小是否会发生变化?请说明理由.
11.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,
(1)⊙P的半径为 ;
(2)求证:EF为⊙P的切线;
(3)若点H是上一动点,连接OH、FH,当点H在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.
12.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.
13.如图,在中,圆心关于弦的对称点恰好在上,连接、、、.
(1)求证:四边形是菱形;
(2)如图,若点是优弧(不含端点、)上任意一点,连接交于点,的半径为.
试探究
①线段与的积是否为定值?若是,求出该定值;若不是,请说明理由;
②求的取值范围.
14.如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.
(1)求抛物线的解析式;
(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;
(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.
15.如图1,点、,其中、满足,将点、分别向上平移2个单位,再向右平移1个单位至、,连接、.
(1)直接写出点的坐标:__________;
(2)连接交于一点,求的值:
(3)如图2,点从点出发,以每秒1个单位的速度向上平移运动,同时点从点出发,以每秒2个单位的速度向左平移运动,设射线交轴于.问的值是否为定值?如果是定值,请求出它的值;如果不是定值,请说明理由.
16.如图所示,为等腰底边上一动点,于于,,问当点在边上运动时,的值是否为定值,如果是,求出这个定值,如果不是,说明理由.
17.如图,在平面直角坐标系中,已知直线和与轴分别相交于点和点,设两直线相交于点,点为的中点,点是线段上一个动点(不与点和重合),连结,并过点作交于点.
()判断的形状,并说明理由.
()当点在线段上运动时,四边形的面积是否为定值?若是,请求出这个定值;若不是,请说明理由.
()当点的横坐标为时,在轴上找到一点使得的周长最小,请直接写出点的坐标.
中考数学二轮复习解答题培优专题09 动态几何定值问题(含解析): 这是一份中考数学二轮复习解答题培优专题09 动态几何定值问题(含解析),共65页。
中考数学二轮专项培优专题09 动态几何定值问题(教师版): 这是一份中考数学二轮专项培优专题09 动态几何定值问题(教师版),共65页。
【全套】中考数学复习专题(知识梳理+含答案)专题09 动态几何定值问题(解析版): 这是一份【全套】中考数学复习专题(知识梳理+含答案)专题09 动态几何定值问题(解析版),共65页。