终身会员
搜索
    上传资料 赚现金
    初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)
    立即下载
    加入资料篮
    初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)01
    初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)02
    初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版)

    展开
    这是一份初中数学中考复习 专题10 二次函数-2022年中考数学真题分项汇编(全国通用)(第1期)(原卷版),共21页。

    专题10 二次函数
    一.选择题
    1.(2022·山东泰安)抛物线上部分点的横坐标x,纵坐标y的对应值如表:
    x
    -2
    -1
    0
    6
    y
    0
    4
    6
    1
    下列结论不正确的是(       )
    A.抛物线的开口向下 B.抛物线的对称轴为直线
    C.抛物线与x轴的一个交点坐标为 D.函数的最大值为
    2.(2022·新疆)已知抛物线,下列结论错误的是(       )
    A.抛物线开口向上 B.抛物线的对称轴为直线
    C.抛物线的顶点坐标为 D.当时,y随x的增大而增大
    3.(2022·湖南株洲)已知二次函数,其中、,则该函数的图象可能为(       )
    A. B.C. D.
    4.(2022·陕西)已知二次函数y=x2−2x−3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当−13时,y1,y2,y3三者之间的大小关系是(       )
    A. B. C. D.
    5.(2022·浙江宁波)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为(       )
    A. B. C. D.
    6.(2022·山东泰安)一元二次方程根的情况是(       )
    A.有一个正根,一个负根 B.有两个正根,且有一根大于9小于12
    C.有两个正根,且都小于12 D.有两个正根,且有一根大于12
    7.(2022·四川成都)如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是(       )

    A. B.当时,的值随值的增大而增大
    C.点的坐标为 D.
    8.(2022·四川泸州)抛物线经平移后,不可能得到的抛物线是(       )
    A. B. C. D.
    9.(2022·四川自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形,等腰三角形(底边靠墙),半圆形这三种方案,最佳方案是(       )


    A.方案1 B.方案2 C.方案3 D.方案1或方案2
    10.(2022·山东泰安)如图,函数和(是常数,且)在同一平面直角坐标系的图象可能是(       )
    A. B. C. D.
    11.(2022·湖北随州)如图,已知开口向下的抛物线与x轴交于点对称轴为直线.则下列结论:①;②;③函数的最大值为;④若关于x的方数无实数根,则.正确的有(       )

    A.1个 B.2个 C.3个 D.4个
    12.(2022·浙江杭州)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是(       )
    A.命题① B.命题② C.命题③ D.命题④
    13.(2022·天津)已知抛物线(a,b,c是常数,)经过点,有下列结论:①;②当时,y随x的增大而增大;
    ③关于x的方程有两个不相等的实数根.其中,正确结论的个数是(       )
    A.0 B.1 C.2 D.3
    14.(2022·浙江温州)已知点都在抛物线上,点A在点B左侧,下列选项正确的是(       )
    A.若,则 B.若,则 C.若,则 D.若,则
    15.(2022·浙江绍兴)已知抛物线的对称轴为直线,则关于x的方程的根是(       )
    A.0,4 B.1,5 C.1,-5 D.-1,5
    16.(2022·山东滨州)如图,抛物线与x轴相交于点,与y轴相交于点C,小红同学得出了以下结论:①;②;③当时,;④.其中正确的个数为(       )

    A.4 B.3 C.2 D.1
    17.(2022·四川南充)已知点在抛物线上,当且时,都有,则m的取值范围为(       )
    A. B. C. D.
    二、填空题
    18.(2022·新疆)如图,用一段长为的篱芭围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为_______.

    19.(2022·甘肃武威)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度(单位:m)与飞行时间(单位:s)之间具有函数关系:,则当小球飞行高度达到最高时,飞行时间_________s.

    20.(2022·江苏连云港)如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.

    21.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.

    22.(2022·四川遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.

    23.(2022·湖北武汉)已知抛物线(,,是常数)开口向下,过,两点,且.下列四个结论:①;②若,则;
    ③若点,在抛物线上,,且,则;
    ④当时,关于的一元二次方程必有两个不相等的实数根.
    其中正确的是_________(填写序号).
    24.(2022·四川南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高时,水柱落点距O点;喷头高时,水柱落点距O点.那么喷头高_______________m时,水柱落点距O点.

    三.解答题
    25.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.
    (1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
    (2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?









    26.(2022·湖北十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量(件)与销售时间(天)之间的关系式是 ,销售单价(元/件)与销售时间(天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当时,求日销售额的最大值;
    (3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?


    27.(2022·四川广元)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.
    (1)科技类图书与文学类图书的单价分别为多少元?
    (2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?








    28.(2022·湖北黄冈)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
    (1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
    (2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
    ①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
    ②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.




    29.(2022·江苏扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘在轴上,且dm,外轮廓线是抛物线的一部分,对称轴为轴,高度dm.现计划将此余料进行切割:
    (1)若切割成正方形,要求一边在底部边缘上且面积最大,求此正方形的面积;
    (2)若切割成矩形,要求一边在底部边缘上且周长最大,求此矩形的周长;
    (3)若切割成圆,判断能否切得半径为dm的圆,请说明理由.



    30.(2022·江西)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点K到起跳台的水平距离为,高度为(h为定值).设运动员从起跳点A起跳后的高度与水平距离之间的函数关系为.
    (1)c的值为__________;(2)①若运动员落地点恰好到达K点,且此时,求基准点K的高度h;
    ②若时,运动员落地点要超过K点,则b的取值范围为__________;(3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过K点,并说明理由.


    31.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.(1)求满足设计要求的抛物线的函数表达式;
    (2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.


    32.(2022·浙江温州)根据以下素材,探索完成任务.
    如何设计拱桥景观灯的悬挂方案?
    素材1:图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.

    素材2:为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.

    问题解决
    任务1:确定桥拱形状
    在图2中建立合适的直角坐标系,求抛物线的函数表达式.
    任务2:探究悬挂范围
    在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
    任务3:拟定设计方案
    给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.




    33.(2022·浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
    (1)求抛物线L1的函数表达式.
    (2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
    (3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.






    34.(2022·浙江杭州)设二次函数(b,c是常数)的图像与x轴交于A,B两点.
    (1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.
    (2)若函数的表达式可以写成(h是常数)的形式,求的最小值.
    (3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值.











    35.(2022·浙江宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?





    36.(2022·浙江绍兴)已知函数(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.







    37.(2022·安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.

    (1)求此抛物线对应的函数表达式;
    (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段,,,MN长度之和.请解决以下问题:
    (ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED上.设点的横坐标为,求栅栏总长l与m之间的函数表达式和l的最大值;
    (ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).






    38.(2022·山东滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;
    (2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.










    39.(2022·湖南湘潭)已知抛物线.

    (1)如图①,若抛物线图象与轴交于点,与轴交点.连接.
    ①求该抛物线所表示的二次函数表达式;
    ②若点是抛物线上一动点(与点不重合),过点作轴于点,与线段交于点.是否存在点使得点是线段的三等分点?若存在,请求出点的坐标;若不存在,请说明理由.
    (2)如图②,直线与轴交于点,同时与抛物线交于点,以线段为边作菱形,使点落在轴的正半轴上,若该抛物线与线段没有交点,求的取值范围.











    40.(2022·四川乐山)如图1,已知二次函数的图象与x轴交于点、,与y轴交于点C,且.(1)求二次函数的解析式;(2)如图2,过点C作轴交二次函数图象于点D,P是二次函数图象上异于点D的一个动点,连接PB、PC,若,求点P的坐标;(3)如图3,若点P是二次函数图象上位于BC下方的一个动点,连接OP交BC于点Q.设点P的横坐标为t,试用含t的代数式表示的值,并求的最大值.




    41.(2022·浙江湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.




    42.(2022·云南)已知抛物线经过点(0,2),且与轴交于A、B两点.设k是抛物线与轴交点的横坐标;M是抛物线的点,常数m>0,S为△ABM的面积.已知使S=m成立的点M恰好有三个,设T为这三个点的纵坐标的和.
    (1)求c的值;(2)直接写出T的值;(3)求的值.








    43.(2022·四川自贡)已知二次函数.(1)若,且函数图象经过,两点,求此二次函数的解析式,直接写出抛物线与轴交点及顶点的坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值时自变量的取值范围;
    (3)若且,一元二次方程 两根之差等于,函数图象经过,两点,试比较的大小 .




    44.(2022·四川凉山)在平面直角坐标系xoy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.




    45.(2022·江苏连云港)已知二次函数,其中.
    (1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
    (2)求证:二次函数的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.




    46.(2022·浙江舟山)已知抛物线:()经过点.
    (1)求抛物的函数表达式.(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.










    47.(2022·山东滨州)如图,在平面直角坐标系中,抛物线与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接.


    (1)求线段AC的长;(2)若点Р为该抛物线对称轴上的一个动点,当时,求点P的坐标;
    (3)若点M为该抛物线上的一个动点,当为直角三角形时,求点M的坐标.




    48.(2022·山东泰安)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.(1)求二次函数的表达式;(2)若点M在直线上,且在第四象限,过点M作轴于点N.①若点N在线段上,且,求点M的坐标;②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.



    49.(2022·四川眉山)在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),与轴交于点,且点的坐标为.
    (1)求点的坐标;(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.






    50.(2022·湖南衡阳)如图,已知抛物线交轴于、两点,将该抛物线位于轴下方的部分沿轴翻折,其余部分不变,得到的新图象记为“图象”,图象交轴于点.

    (1)写出图象位于线段上方部分对应的函数关系式;
    (2)若直线与图象有三个交点,请结合图象,直接写出的值;
    (3)为轴正半轴上一动点,过点作轴交直线于点,交图象于点,是否存在这样的点,使与相似?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.


    相关试卷

    初中数学中考复习 专题49圆(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题49圆(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共37页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题30二次函数(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题30二次函数(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共24页。试卷主要包含了解答题等内容,欢迎下载使用。

    初中数学中考复习 专题29二次函数(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版): 这是一份初中数学中考复习 专题29二次函数(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共39页。试卷主要包含了解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map