初中数学中考复习 专题11 一元二次方程及其应用(原卷版)
展开1.一元二次方程的定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
2.一元二次方程的一般形式:ax2+bx+c=0(a≠0)。其中ax2 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
4.一元二次方程的解法
(1)直接开方法:适用形式:x2=p、(x+n)2=p或(mx+n)2=p。
(2)配方法:套用公式a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2,配方法解一元二次方程的一般步骤是:
①将已知方程化为一般形式;
②化二次项系数为1;
③常数项移到右边;
④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
(3)公式法:
当b2-4ac≥0时,方程ax2+bx+c=0的实数根可写为:的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式。这种解一元二次方程的方法叫做公式法。
其中:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。
①Δ=b2-4ac>0时,方程有两个不相等的实数根。
,
②Δ=b2-4ac=0时,方程有两个相等的实数根。
③Δ=b2-4ac<0时,方程无实数根。
定义:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。
(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。主要用提公因式法、平方差公式。
5.解有关一元二次方程的实际问题的一般步骤
第1步:审题。认真读题,分析题中各个量之间的关系;
第2步:设未知数。根据题意及各个量的关系设未知数;
第3步:列方程。根据题中各个量的关系列出方程;
第4步:解方程。根据方程的类型采用相应的解法;
第5步:检验。检验所求得的根是否满足题意。
第6步:答。
【例题1】(2020•临沂)一元二次方程x2﹣4x﹣8=0的解是( )
A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2
C.x1=2+2,x2=2﹣2D.x1=23,x2=﹣2
【对点练习】(2019•浙江金华)用配方法解方程x2-6x-8=0时,配方结果正确的是( )
A. (x-3)2=17 B. (x-3)2=14 C. (x-6)2=44 D. (x-3)2=1
【对点练习】(2019年山东省威海市)一元二次方程3x2=4﹣2x的解是 .
【例题2】(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x的方程x2﹣4x+k=0的两个根,则k的值为( )
A.3B.4C.3或4D.7
【对点练习】(2019内蒙古包头市)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是( )
A. 34B.30C.30或34D.30或36
【例题3】(2020贵州黔西南)已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是( )
A. m<2B. m≤2C. m<2且m≠1D. m≤2且m≠1
【对点练习】(2019湖北咸宁)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是( )
A.m<1B.m≤1C.m>1D.m≥1
【例题4】(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )
A.35×20﹣35x﹣20x+2x2=600
B.35×20﹣35x﹣2×20x=600
C.(35﹣2x)(20﹣x)=600
D.(35﹣x)(20﹣2x)=600
【对点练习】(2019哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20% B.40% C.18% D.36%
一、选择题
1.(2020•凉山州)一元二次方程x2=2x的根为( )
A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2
2.(2020•怀化)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为( )
A.k=4B.k=﹣4C.k=±4D.k=±2
3.(2020•黑龙江)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是( )
A.k<1/4B.k≤1/4C.k>4D.k≤1/4且k≠0
≤1/44.(2020•泰安)将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )
A.﹣4,21B.﹣4,11C.4,21D.﹣8,69
5.(2020•黑龙江)已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是( )
A.0B.1C.﹣3D.﹣1
6.(2020•滨州)对于任意实数k,关于x的方程x2/2-(k+5)x+k2+2k+25=0的根的情况为( )
A.有两个相等的实数根B.没有实数根
C.有两个不相等的实数根D.无法判定
7. (2019•湖南衡阳)国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得( )
A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1
二、填空题
8.(2020•辽阳)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是 .
9.(2020•烟台)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是 .
10.(2020•扬州)方程(x+1)2=9的根是 .
11.(2020•上海)如果关于x的方程x2﹣4x+m=0有两个相等的实数根,那么m的值是 .
12.(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为 .
13.(2019年江苏省扬州市)一元二次方程x(x﹣2)=x﹣2的根是 .
14.(2019湖北十堰)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= .
15. (2019吉林长春)一元二次方程x2-3x+1=0根的判别式的值为________.
16.(2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为 .(用百分数表示)
17.(2019年江苏省连云港市)已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于 .
三、解答题
18.(2020•河北)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.
如,第一次按键后,A,B两区分别显示:
(1)从初始状态按2次后,分别求A,B两区显示的结果;
(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.
19.(2020•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+12k2﹣2=0.
(1)求证:无论k为何实数,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.
20.(2020•重庆)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.
(1)求A、B两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加209a%.求a的值.
21.(2019北京市)关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.
22.(2019•湖南衡阳)关于x的一元二次方程x2﹣3x+k=0有实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.
23. (2019•湖南长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
初中数学中考复习 专题11 一元二次方程及其应用(解析版): 这是一份初中数学中考复习 专题11 一元二次方程及其应用(解析版),共18页。试卷主要包含了一元二次方程的定义,一元二次方程的一般形式,一元二次方程的根,一元二次方程的解法等内容,欢迎下载使用。
初中数学中考复习 专题10 分式方程及其应用(原卷版): 这是一份初中数学中考复习 专题10 分式方程及其应用(原卷版),共5页。试卷主要包含了分式方程的定义,解分式方程的一般方法等内容,欢迎下载使用。
初中数学中考复习 专题09 一元二次方程及其应用(原卷版): 这是一份初中数学中考复习 专题09 一元二次方程及其应用(原卷版),共7页。试卷主要包含了定义等内容,欢迎下载使用。