初中数学中考复习 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)
展开
这是一份初中数学中考复习 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期),共49页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
2021年中考数学真题分项汇编【全国通用】(第01期)
专题13二次函数图象性质与应用(共38题)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
1.(2021·山东泰安市·中考真题)将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A. B. C. D.
【答案】B
【分析】
根据二次函数平移性质“左加右减,上加下减”,得出将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线的解析式,代入求值即可.
【详解】
解:将抛物线化为顶点式,
即:
,
将抛物线的图象向右平移1个单位,再向下平移2个单位,
根据函数图像平移性质:左加右减,上加下减得:
,
A选项代入,,不符合;
B选项代入, ,符合;
C选项代入, ,不符合;
D选项代入,,不符合;
故选:B.
【点睛】
本题主要考查函数图像平移的性质,一般先将函数化为顶点式:即的形式,然后按照“上加下减,左加右减”的方式写出平移后的解析式,能够根据平移方式写出平移后的解析式是解题关键.
2.(2021·浙江绍兴市·中考真题)关于二次函数的最大值或最小值,下列说法正确的是( )
A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值6
【答案】D
【分析】
根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值.
【详解】
解:∵在二次函数中,a=2>0,顶点坐标为(4,6),
∴函数有最小值为6.
故选:D.
【点睛】
本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.
3.(2021·四川凉山彝族自治州·中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )
A. B.函数的最大值为
C.当时, D.
【答案】D
【分析】
根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.
【详解】
解:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-1,
∴,即b=2a,则b<0,
∵抛物线与y轴交于正半轴,
∴c>0,
则abc>0,故A正确;
当x=-1时,y取最大值为,故B正确;
由于开口向上,对称轴为直线x=-1,
则点(1,0)关于直线x=-1对称的点为(-3,0),
即抛物线与x轴交于(1,0),(-3,0),
∴当时,,故C正确;
由图像可知:当x=-2时,y>0,
即,故D错误;
故选D.
【点睛】
本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
4.(2021·陕西中考真题)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
…
-2
0
1
3
…
…
6
-4
-6
-4
…
下列各选项中,正确的是
A.这个函数的图象开口向下
B.这个函数的图象与x轴无交点
C.这个函数的最小值小于-6
D.当时,y的值随x值的增大而增大
【答案】C
【分析】
利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.
【详解】
解:设二次函数的解析式为,
依题意得:,解得:,
∴二次函数的解析式为=,
∵,
∴这个函数的图象开口向上,故A选项不符合题意;
∵,
∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;
∵,∴当时,这个函数有最小值,故C选项符合题意;
∵这个函数的图象的顶点坐标为(,),
∴当时,y的值随x值的增大而增大,故D选项不符合题意;
故选:C.
【点睛】
本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.
5.(2021·四川眉山市·中考真题)在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )
A. B.
C. D.
【答案】A
【分析】
先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.
【详解】
解:当x=0时,y=5,
∴C(0,5);
设新抛物线上的点的坐标为(x,y),
∵原抛物线与新抛物线关于点C成中心对称,
由,;
∴对应的原抛物线上点的坐标为;
代入原抛物线解析式可得:,
∴新抛物线的解析式为:;
故选:A.
【点睛】
本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.
6.(2021·浙江杭州市·中考真题)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )
A.和
B.和
C.和
D.和
【答案】A
【分析】
根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.
【详解】
解:当时,函数值分别为和,若存在实数,使得,
对于A选项则有,由一元二次方程根的判别式可得:,所以存在实数m,故符合题意;
对于B选项则有,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
对于C选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
对于D选项则有,化简得:,由一元二次方程根的判别式可得:,所以不存在实数m,故不符合题意;
故选A.
【点睛】
本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.
7.(2021·上海中考真题)将抛物线向下平移两个单位,以下说法错误的是( )
A.开口方向不变 B.对称轴不变 C.y随x的变化情况不变 D.与y轴的交点不变
【答案】D
【分析】
根据二次函数的平移特点即可求解.
【详解】
将抛物线向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变
故选D.
【点睛】
此题主要考查二次函数的函数与图象,解题的关键是熟知二次函数图象平移的特点.
8.(2021·江苏苏州市·中考真题)已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是( )
A.或2 B. C.2 D.
【答案】B
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行解答即可.
【详解】
解:函数向右平移3个单位,得:;
再向上平移1个单位,得:+1,
∵得到的抛物线正好经过坐标原点
∴+1即
解得:或
∵抛物线的对称轴在轴右侧
∴>0
∴<0
∴
故选:B.
【点睛】
此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.
9.(2021·天津中考真题)已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】D
【分析】
根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】
∵抛物线(是常数,)经过点,当时,与其对应的函数值.
∴c=1>0,a-b+c= -1,4a-2b+c>1,
∴a-b= -2,2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
∴abc>0,
∵,
∴△==>0,
∴有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
【点睛】
本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键.
10.(2021·四川遂宁市·中考真题)已知二次函数的图象如图所示,有下列5个结论:①;②;③;④();⑤若方程=1有四个根,则这四个根的和为2,其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个
【答案】A
【分析】
根据抛物线的开口向下,对称轴方程以及图象与y轴的交点得到a,b,c的取值,于是可对①进行判断;根据抛物线与x轴的交点的个数可对②进行判断;根据对称轴可得,则,根据可得,代入变形可对③进行判断;当时,的值最大,即当时,即>,则可对④进行判断;由于方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,则利用根与系数的关系可对⑤进行判断.
【详解】
解:①∵抛物线开口方向向下,
∴a<0,
∵抛物线与y轴交于正半轴,
∴c>0,
∵对称轴在y轴右侧,
∴b>0,
∴abc<0,①错误;
②∵抛物线与x轴有两个交点
∴>0
∴,故②错误;
③∵抛物线的对称轴为直线x=1,
∴,
∴
由图象得,当时,,
∴
∴,故③正确;
④当时,的值最大,
∴当时,>,
∴(),
∵b>0,
∴(),故④正确;
⑤∵方程|ax2+bx+c|=1有四个根,
∴方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,
∴所有根之和为2×(-)=2×=4,所以⑤错误.
∴正确的结论是③④,
故选:A
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
11.(2021·江苏连云港市·中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.
甲:函数图像经过点;
乙:函数图像经过第四象限;
丙:当时,y随x的增大而增大.
则这个函数表达式可能是( )
A. B. C. D.
【答案】D
【分析】
根据所给函数的性质逐一判断即可.
【详解】
解:A.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而减小.故选项A不符合题意;
B.对于,当x=-1时,y=-1,故函数图像不经过点;函数图象分布在一、三象限;当时,y随x的增大而减小.故选项B不符合题意;
C.对于,当x=-1时,y=1,故函数图像经过点;函数图象分布在一、二象限;当时,y随x的增大而增大.故选项C不符合题意;
D.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而增大.故选项D符合题意;
故选:D
【点睛】
本题考查的是一次函数、二次函数以及反比例函数的性质,熟知相关函数的性质是解答此题的关键.
12.(2021·四川乐山市·中考真题)如图,已知,,,与、均相切,点是线段与抛物线的交点,则的值为( )
A.4 B. C. D.5
【答案】D
【分析】
在Rt△AOB中,由勾股定理求得;再求得直线AC的解析式为;设的半径为m,可得P(m,-m+6);连接PB、PO、PC,根据求得m=1,即可得点P的坐标为(1,5);再由抛物线过点P,由此即可求得.
【详解】
在Rt△AOB中,,,
∴;
∵,,
∴OC=6,
∴C(0,6);
∵,
∴A(6,0);
设直线AC的解析式为,
∴ ,
解得,
∴直线AC的解析式为;
设的半径为m,
∵与相切,
∴点P的横坐标为m,
∵点P在直线直线AC上,
∴P(m,-m+6);
连接PB、PO、PA,
∵与、均相切,
∴△OBP边OB上的高为m,△AOB边AB上的高为m,
∵P(m,-m+6);
∴△AOP边OA上的高为-m+6,
∵,
∴,
解得m=1,
∴P(1,5);
∵抛物线过点P,
∴.
故选D.
【点睛】
本题考查了切线的性质定理、勾股定理、待定系数法求解析式,正确求出的半径是解决问题的关键.
13.(2021·四川资阳市·中考真题)已知A、B两点的坐标分别为、,线段上有一动点,过点M作x轴的平行线交抛物线于、两点.若,则a的取值范围为( )
A. B. C. D.
【答案】C
【分析】
先根据题意画出函数的图象,再结合图象建立不等式组,解不等式组即可得.
【详解】
解:由题意得:线段(除外)位于第四象限,
过点且平行轴的直线在轴的下方,
抛物线的顶点坐标为,此顶点位于第一象限,
,
画出函数图象如下:
结合图象可知,若,则当时,二次函数的函数值;当时,二次函数的函数值,
即,解得,
又,
,
故选:C.
【点睛】
本题考查了二次函数与一元一次不等式组,熟练掌握二次函数的图象与性质,以及图象法是解题关键.
14.(2021·四川泸州市·中考真题)直线l过点(0,4)且与y轴垂直,若二次函数(其中x是自变量)的图像与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )
A.a>4 B.a>0 C.0<a≤4 D.0<a<4
【答案】D
【分析】
由直线l:y=4,化简抛物线,令,利用判别式,解出,由对称轴在y轴右侧可求即可.
【详解】
解:∵直线l过点(0,4)且与y轴垂直,
直线l:y=4,
,
∴,
∵二次函数(其中x是自变量)的图像与直线l有两个不同的交点,
∴,
,
∴,
又∵对称轴在y轴右侧,
,
∴,
∴0<a<4.
故选择D.
【点睛】
本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛物线对称轴公式是解题关键.
15.(2021·浙江中考真题)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】A
【分析】
通过和的不等关系,确定,在抛物线上的相对位置,逐一分析即可求解.
【详解】
解:∵抛物线与轴的交点为和,
∴该抛物线对称轴为,
当时与当时无法确定,在抛物线上的相对位置,
故①和②都不正确;
当时,比离对称轴更远,且同在x轴上方或者下方,
∴,
∴,故③正确;
当时,即在x轴上到2的距离比到的距离大,且都大于1,
可知在x轴上到2的距离大于1,到2的距离不能确定,
所以无法比较与谁离对称轴更远,故无法比较面积,故④错误;
故选:A.
【点睛】
本题考查二次函数的图象与性质,掌握二次函数的对称性是解题的关键.
16.(2021·四川自贡市·中考真题)如图,直线与坐标轴交于A、B两点,点P是线段AB上的一个动点,过点P作y轴的平行线交直线于点Q,绕点O顺时针旋转45°,边PQ扫过区域(阴影部份)面积的最大值是( )
A. B. C. D.
【答案】A
【分析】
根据题意得,设P(a,2-2a),则Q(a,3-a),利用扇形面积公式得到,利用二次函数的性质求解即可.
【详解】
解:如图,
根据旋转的性质,,
∴,
则
,
∵点P在直线上,点Q在直线上,且PQ∥轴,
设P(a,2-2a),则Q(a,3-a),
∴OP2=,
OQ2=,
,
设,
∵,
∴当时,有最大值,最大值为,
∴的最大值为.
故选:A.
【点睛】
本题考查了旋转的性质,扇形的面积公式,二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件.
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
17.(2021·四川成都市·中考真题)在平面直角坐标系中,若抛物线与x轴只有一个交点,则_______.
【答案】1
【分析】
根据抛物线与x轴只有一个交点可知方程=0根的判别式△=0,解方程求出k值即可得答案.
【详解】
∵抛物线与x轴只有一个交点,
∴方程=0根的判别式△=0,即22-4k=0,
解得:k=1,
故答案为:1
【点睛】
本题考查二次函数与x轴的交点问题,对于二次函数(k≠0),当判别式△>0时,抛物线与x轴有两个交点;当k=0时,抛物线与x轴有一个交点;当x<0时,抛物线与x轴没有交点;熟练掌握相关知识是解题关键.
18.(2021·山东泰安市·中考真题)如图是抛物线的部分图象,图象过点,对称轴为直线,有下列四个结论:①;②;③y的最大值为3;④方程有实数根.其中正确的为________(将所有正确结论的序号都填入).
【答案】②④
【分析】
根据二次函数的图象与性质对各项进行判断即可.
【详解】
解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴,
∴a<0,c>0,
∵抛物线的对称轴为直线x=1,
∴﹣=1,即b=﹣2a>0
∴abc<0,故①错误;
∵抛物线与x轴的一个交点坐标为(3,0),
∴根据对称性,与x轴的另一个交点坐标为(﹣1,0),
∴a﹣b+c=0,故②正确;
根据图象,y是有最大值,但不一定是3,故③错误;
由得,
根据图象,抛物线与直线y=﹣1有交点,
∴有实数根,故④正确,
综上,正确的为②④,
故答案为:②④.
【点睛】
本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,会利用数形结合思想解决问题是解答的关键.
19.(2021·江苏连云港市·中考真题)某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.
【答案】1264
【分析】
根据题意,总利润=快餐的总利润+快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.
【详解】
解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.
据题意:
∴
∵
∴当的时候,W取到最大值1264,故最大利润为1264元
故答案为:1264
【点睛】
本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.
20.(2021·四川南充市·中考真题)关于抛物线,给出下列结论:①当时,抛物线与直线没有交点;②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;③若抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),则.其中正确结论的序号是________.
【答案】②③
【分析】
先联立方程组,得到,根据判别式即可得到结论;②先求出a<1,分两种情况:当0<a<1时,当a<0时,进行讨论即可;③求出抛物线的顶点坐标为:,进而即可求解.
【详解】
解:联立,得,
∴∆=,当时,∆有可能≥0,
∴抛物线与直线有可能有交点,故①错误;
抛物线的对称轴为:直线x=,
若抛物线与x轴有两个交点,则∆=,解得:a<1,
∵当0<a<1时,则>1,此时,x<,y随x的增大而减小,
又∵x=0时,y=1>0,x=1时,y=a-1<0,
∴抛物线有一个交点在点(0,0)与(1,0)之间,
∵当a<0时,则<0,此时,x>,y随x的增大而减小,
又∵x=0时,y=1>0,x=1时,y=a-1<0,
∴抛物线有一个交点在点(0,0)与(1,0)之间,
综上所述:若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间,故②正确;
抛物线的顶点坐标为:,
∵,
∴抛物线的顶点所在直线解析式为:x+y=1,即:y=-x+1,
∵抛物线的顶点在点(0,0),(2,0),(0,2)所围成的三角形区域内(包括边界),
∴,解得:,故③正确.
故答案是:②③.
【点睛】
本题主要考查二次函数的图像和性质,掌握二次函数与二次方程的联系,熟练应用判别式判断一元二次方程根的情况,是解题的关键.
21.(2021·安徽)设抛物线,其中a为实数.
(1)若抛物线经过点,则______;
(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.
【答案】0 2
【分析】
(1)直接将点代入计算即可
(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值
【详解】
解:(1)将代入得:
故答案为:0
(2)根据题意可得新的函数解析式为:
由抛物线顶点坐标
得新抛物线顶点的纵坐标为:
∵
∴当a=1时,有最大值为8,
∴所得抛物线顶点的纵坐标的最大值是
故答案为:2
【点睛】
本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法
22.(2021·浙江中考真题)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是____.
【答案】2或
【分析】
分,和 确定点M的运动范围,结合抛物线的对称轴与,,共有三个不同的交点,确定对称轴的位置即可得出结论.
【详解】
解:由题意得:O(0,0),A(3,4)
∵为直角三角形,则有:
①当时,
∴点M在与OA垂直的直线上运动 (不含点O);如图,
②当时,,
∴点M在与OA垂直的直线上运动 (不含点A);
③当时,,
∴点M在与OA为直径的圆上运动,圆心为点P,
∴点P为OA的中点,
∴
∴半径r=
∵抛物线的对称轴与x轴垂直
由题意得,抛物线的对称轴与,,共有三个不同的交点,
∴抛物线的对称轴为的两条切线,
而点P到切线,的距离 ,
又
∴直线的解析式为:;直线的解析式为:;
∴或4
∴或-8
故答案为:2或-8
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度.运用数形结合、分类讨论是解题的关键.
23.(2021·湖北武汉市·中考真题)如图(1),在中,,,边上的点从顶点出发,向顶点运动,同时,边上的点从顶点出发,向顶点运动,,两点运动速度的大小相等,设,,关于的函数图象如图(2),图象过点,则图象最低点的横坐标是__________.
【答案】
【分析】
先根据图形可知AE+CD=AB+AC=2,进而求得AB=AC=1、BC=以及图象最低点的函数值即为AE+CD的最小值;再运用勾股定理求得CD、AE,然后根据AE+CD得到+可知其表示点(x,0)到(0,-1)与(,)的距离之和,然后得当三点共线时有函数值.最后求出该直线的解析式,进而求得x的值.
【详解】
解:由图可知,当x=0时,AE+CD=AB+AC=2
∴AB=AC=1,BC=,图象最低点函数值即为AE+CD的最小值
由题意可得:CD=,AE=
∴AE+CD=+,即点(x,0)到(0,-1)与(,)的距离之和
∴当这三点共线时,AE+CD最小
设该直线的解析式为y=kx+b
解得
∴
当y=0时,x=.
故填.
【点睛】
本题主要考查了二次函数与方程的意义,从几何图形和函数图象中挖掘隐含条件成为解答本题的关键.
24.(2021·湖北武汉市·中考真题)已知抛物线(,,是常数),,下列四个结论:
①若抛物线经过点,则;
②若,则方程一定有根;
③抛物线与轴一定有两个不同的公共点;
④点,在抛物线上,若,则当时,.
其中正确的是__________(填写序号).
【答案】①②④
【分析】
①将代入解析式即可判定;②由b=c,可得a=-2c,cx2+bx+a=0可得cx2+cx-2c=0,则原方程可化为x2+x-2=0,则一定有根x=-2;③当b2-4ac≤0时,图像与x轴少于两个公共点,只有一个关于a,b,c的方程,故存在a、b、c使b2-4ac≤0≤0,故③错误;④若02|a|,所以对称轴,因为a>0在对称轴左侧,函数单调递减,所以当x10在对称轴左侧,函数单调递减,所以当x1
相关试卷
这是一份专题12 二次函数图象性质与应用(共55题)-2023年中考数学真题分项汇编(全国通用),文件包含二次函数图象性质与应用共55题解析版pdf、二次函数图象性质与应用共55题学生版pdf等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
这是一份专题12 二次函数图象性质与应用(共30道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题12二次函数图象性质与应用共30道原卷版docx、专题12二次函数图象性质与应用共30道解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份初中数学中考复习 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期),共57页。试卷主要包含了单选题等内容,欢迎下载使用。